解:先求a,l2化為2x-y-=0,l1與l2之距,即=|a+|.解得a=3或-4(舍去).
設(shè)點(diǎn)P(x0,y0),若P點(diǎn)滿足條件②,
則P點(diǎn)在與l1、l2平行的直線l′:2x-y+C=0上,且,
即C=或C=,
∴2x0-y0+=0或2x0-y0+=0.
若P點(diǎn)滿足條件③,由點(diǎn)到直線的距離公式,
有,
即|2x0-y0+3|=|x0+y0-1|,
∴x0-2y0+4=0或3x0+2=0.
由P點(diǎn)在第一象限,
∴3x0+2=0不可能.
聯(lián)立方程2x0-y0+=0和x0-2y0+4=0,
解得點(diǎn)不在第一象限,應(yīng)舍去.
由
∴存在點(diǎn)P()滿足各條件.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
7 |
10 |
5 |
1 |
2 |
2 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
7
| ||
10 |
1 |
2 |
2 |
5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三條直線l1:2x-y+a=0(a>0),直線l2:-4x+2y+1=0和直線l3:x+y-1=0,且l1與l2的距離是.
(1)求a的值;w.w.w.k.s.5.u.c.o.m
(2)求l3到l1的角θ;
(3)能否找到一點(diǎn)P,使得P點(diǎn)同時滿足下列三個條件:①P是第一象限的點(diǎn);②P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;③P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是∶?若能,求P點(diǎn)坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求實(shí)數(shù)a的值;
(2)能否找到一點(diǎn)P,使得P點(diǎn)同時滿足下列三個條件:①P是第一象限的點(diǎn);②P點(diǎn)到直線l1的距離是P點(diǎn)到直線l2的距離的;③P點(diǎn)到直線l1的距離與P點(diǎn)到直線l3的距離之比為∶.若能,求出點(diǎn)P的坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知三條直線l1:2x-y+3=0,直線l2:-4x+2y+1=0和直線l3:x+y-1=0.能否找到一點(diǎn)P,使得P點(diǎn)同時滿足下列三個條件:(1)P是第一象限的點(diǎn);(2)P點(diǎn)到l1的距離是P點(diǎn)到l2的距離的;(3)P點(diǎn)到l1的距離與P點(diǎn)到l3的距離之比是.若能,求P點(diǎn)坐標(biāo);若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com