【題目】已知拋物線上一點到焦點的距離,傾斜角為的直線經(jīng)過焦點,且與拋物線交于兩點、.
(1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;
(2)若為銳角,作線段的中垂線交軸于點.證明:為定值,并求出該定值.
【答案】(1)拋物線的方程為,準(zhǔn)線方程為;
(2)為定值,證明見解析.
【解析】
(1)利用拋物線的定義結(jié)合條件,可得出,于是可得出點的坐標(biāo),然后將點的坐標(biāo)代入拋物線的方程求出的值,于此可得出拋物線的方程及其準(zhǔn)線方程;
(2)設(shè)直線的方程為,設(shè)點、,將直線的方程與拋物線的方程聯(lián)立,消去,列出韋達(dá)定理,計算出線段的中點的坐標(biāo),由此得出直線的方程,并得出點的坐標(biāo),計算出和的表達(dá)式,可得出,然后利用二倍角公式可計算出為定值,進而證明題中結(jié)論成立.
(1)由拋物線的定義知,,.
將點代入,得,得.
拋物線的方程為,準(zhǔn)線方程為;
(2)設(shè)點、,設(shè)直線的方程為,
由,消去得:,則,
,.
設(shè)直線中垂線的方程為:,
令,得:,則點,,.
,
故為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,過的直線交軸正半軸于點,交拋物線于兩點,其中點在第一象限.
(Ⅰ)求證:以線段為直徑的圓與軸相切;
(Ⅱ)若,,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,連接橢圓的四個頂點得到的菱形的面積為4。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的個數(shù)是( )
①命題:“、,若,則”,用反證法證明時應(yīng)假設(shè)或;
②若,則、中至少有一個大于;
③若、、、、成等比數(shù)列,則;
④命題:“,使得”的否定形式是:“,總有”.
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,,,.
(1)求證:面;
(2)在線段上求一點,使銳二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意,都有,且對任意∈D,當(dāng)時,恒成立,則稱函數(shù)為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)和是否為R上的“平底型”函數(shù)? 并說明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式對一切R恒成立,求實數(shù)的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間上的“平底型”函數(shù),求和的值.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在的奇函數(shù)滿足:①;②對任意均有;③對任意,均有.
(1)求的值;
(2)利用定義法證明在上單調(diào)遞減;
(3)若對任意,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,則關(guān)于的方程,給出下列五個命題:①存在實數(shù),使得該方程沒有實根;
②存在實數(shù),使得該方程恰有個實根;
③存在實數(shù),使得該方程恰有個不同實根;
④存在實數(shù),使得該方程恰有個不同實根;
⑤存在實數(shù),使得該方程恰有個不同實根.
其中正確的命題的個數(shù)是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com