已知M(1,0,1),N(0,1,1),P(1,1,0),則平面MNP的一個(gè)法向量是(  )

(A)(1,0,0)  (B)(0,1,0)

(C)(0,0,1)  (D)(1,1,1)

D.設(shè)平面MNP的一個(gè)法向量為n=(x,y,z),

由已知得=(-1,1,0),=(1,0,-1),

∵n⊥,n⊥,

解得

取x=1,則n=(1,1,1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知M(0,-2),點(diǎn)A在x軸上,點(diǎn)B在y軸的正半軸,點(diǎn)P在直線AB上,且滿足數(shù)學(xué)公式=數(shù)學(xué)公式,數(shù)學(xué)公式=0.
(1)當(dāng)A點(diǎn)在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點(diǎn),又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省江門市鶴山一中高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知M(0,-2),點(diǎn)A在x軸上,點(diǎn)B在y軸的正半軸,點(diǎn)P在直線AB上,且滿足=,=0.
(1)當(dāng)A點(diǎn)在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點(diǎn),又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省梅州、揭陽兩市高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知M(0,-2),點(diǎn)A在x軸上,點(diǎn)B在y軸的正半軸,點(diǎn)P在直線AB上,且滿足=,=0.
(1)當(dāng)A點(diǎn)在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點(diǎn),又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省中山市龍山中學(xué)高考數(shù)學(xué)綜合題(理科)(解析版) 題型:解答題

已知M(0,-2),點(diǎn)A在x軸上,點(diǎn)B在y軸的正半軸,點(diǎn)P在直線AB上,且滿足=,=0.
(1)當(dāng)A點(diǎn)在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點(diǎn),又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年《新高考全案》高考總復(fù)習(xí)單元檢測(cè)卷06:平面向量(解析版) 題型:解答題

已知M(0,-2),點(diǎn)A在x軸上,點(diǎn)B在y軸的正半軸,點(diǎn)P在直線AB上,且滿足=,=0.
(1)當(dāng)A點(diǎn)在x軸上移動(dòng)時(shí),求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點(diǎn),又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案