【題目】給出定義:若 m﹣ <x≤m+ (其中m為整數(shù)),則m叫做離實(shí)數(shù)x最近的整數(shù),記作{x},即{x}=m.在此基礎(chǔ)上給出下列關(guān)于函數(shù)f(x)=x﹣{x}的四個(gè)命題:
①函數(shù)y=f(x)的定義域是R,值域是(﹣ , ]
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③數(shù)y=f(x)的圖象關(guān)于坐標(biāo)原點(diǎn)對稱;
④函數(shù)y=f(x)在(﹣ , ]上是增函數(shù);
則其中正確命題是(填序號).
【答案】①④
【解析】解:由題意知,{x}﹣ <x≤{x}+ ,
則得到f(x)=x﹣{x}∈(﹣ , ],則命題①為真命題;
由于k∈Z時(shí),f(k)=k﹣{k}=k﹣k=0,但由于f(x)∈(﹣ , ],
故函數(shù)不是中心對稱圖形,故命題③為假命題;
由于{x}﹣ <x≤{x}+ ,則得到f(x)=x﹣{x}為分段函數(shù),且在(﹣ , ]為增函數(shù),故命題④為真命題.
進(jìn)而可得:函數(shù)圖象不可能關(guān)于y軸對稱,故命題②為假命題;
正確的命題為①④
所以答案是:①④
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,定義在[﹣1,2]上的函數(shù)f(x)的圖象為折線段ACB,
(1)求函數(shù)f(x)的解析式;
(2)請用數(shù)形結(jié)合的方法求不等式f(x)≥log2(x+1)的解集,不需要證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),,,是橢圓:()的四個(gè)頂點(diǎn),四邊形是圓:的外切平行四邊形,其面積為.橢圓的內(nèi)接的重心(三條中線的交點(diǎn))為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)的面積是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知設(shè)函數(shù)f(x)=loga(1+2x)﹣loga(1﹣2x)(a>0,a≠1).
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性并證明;
(3)求使f(x)>0的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若偶函數(shù)f(x)在(﹣∞,﹣1]上是增函數(shù),則下列關(guān)系式中成立的是( )
A.f(﹣ )<f(﹣1)<f(2)
B.f(﹣1)<f(﹣ )<f(2)??
C.f(2)<f(﹣1)<f(﹣ )
D.f(2)<f(﹣ )<f(﹣1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,若f(﹣4)=f(0),f(﹣2)=﹣1.
(1)求函數(shù)f(x)的解析式;
(2)畫出函數(shù)f(x)的圖象,并指出函數(shù)的定義域、值域、單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求曲線的普通方程及極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是,射線: 與曲線交于點(diǎn)與直線交于點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知橢圓C: 的離心率為, 是橢圓的兩個(gè)焦點(diǎn), 是橢圓上任意一點(diǎn),且的周長是.
(1)求橢圓C的方程;
(2)設(shè)圓T: ,過橢圓的上頂點(diǎn)作圓T的兩條切線交橢圓于E、F兩點(diǎn),當(dāng)圓心在軸上移動且時(shí),求EF的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所設(shè)計(jì)了一款智能機(jī)器人,為了檢驗(yàn)設(shè)計(jì)方案中機(jī)器人動作完成情況,現(xiàn)委托某工廠生產(chǎn)個(gè)機(jī)器人模型,并對生產(chǎn)的機(jī)器人進(jìn)行編號: ,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的機(jī)器人樣本,試驗(yàn)小組對個(gè)機(jī)器人樣本的動作個(gè)數(shù)進(jìn)行分組,頻率分布直方圖及頻率分布表中的部分?jǐn)?shù)據(jù)如圖所示,請據(jù)此回答如下問題:
分組 | 機(jī)器人數(shù) | 頻率 |
0.08 | ||
10 | ||
10 | ||
6 |
(1)補(bǔ)全頻率分布表,畫出頻率分布直方圖;
(2)若隨機(jī)抽的第一個(gè)號碼為,這個(gè)機(jī)器人分別放在三個(gè)房間,從到在房間,從到在房間,從到在房間,求房間被抽中的人數(shù)是多少?
(3)從動作個(gè)數(shù)不低于的機(jī)器人中隨機(jī)選取個(gè)機(jī)器人,該個(gè)機(jī)器人中動作個(gè)數(shù)不低于的機(jī)器人記為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com