已知D為△ABC的邊BC的中點(diǎn),△ABC所在平面內(nèi)有一個(gè)點(diǎn)P,滿足
PA
=
PB
+
PC
,則
|
PD
|
|
AD
|
的值為( 。
A、1
B、
1
3
C、
1
2
D、2
考點(diǎn):向量在幾何中的應(yīng)用
專題:平面向量及應(yīng)用
分析:
PA
=
PB
+
PC
,由向量加法的平行四邊形法則知,PA必為以PB,PC為鄰邊的平行四邊形的對(duì)角線,故有P,D,A三點(diǎn)共線,由平行四邊形對(duì)角線的性質(zhì)易得.
解答:解:因?yàn)?span id="khvowxv" class="MathJye">
PA
=
PB
+
PC
,
所以PA必為以PB,PC為鄰邊的平行四邊形的對(duì)角線,
因?yàn)镈為邊BC的中點(diǎn),所以D為邊PA的中點(diǎn),
|PD
|
|
AD
|
的值為1.
故選A.
點(diǎn)評(píng):本題考查向量加法的幾何意義,由向量的關(guān)系得到幾何圖形中的位置關(guān)系,向量關(guān)系表示幾何關(guān)系是向量的重要應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD為矩形,P為平面ABCD外一點(diǎn),且PA⊥平面ABCD,G為△PCD的重心,若
AG
=x
AB
+y
AD
+z
AP
,則(  )
A、x=
1
3
,y=
1
3
,z=
2
3
B、x=
1
3
,y=
2
3
,z=
1
3
C、x=-
1
3
,y=
2
3
,z=
1
3
D、x=
2
3
,y=
1
3
,z=
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2tan(-2x+
π
3
),求定義域、值域和單調(diào)區(qū)間,并在區(qū)間內(nèi)畫出圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(4x-
π
6
)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,再向左平移
π
4
個(gè)單位,縱坐標(biāo)不變,所得函數(shù)圖象的一條對(duì)稱軸的方程是( 。
A、x=
π
12
B、x=
π
6
C、x=
π
3
D、x=-
π
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(0,π),且2cos2α=sin(α+
π
4
),則sin2α的值為( 。
A、-1或
7
8
B、
7
8
C、-1
D、1或-
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,A={x|y=lg(x2-1)},則CRA=(  )
A、(-∞,1]
B、(-∞,-1)∪(1,+∞)
C、[-1,1]
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinx=
4
5
,x∈(
π
2
,π),則tan(x-
π
4
)=(  )
A、
1
7
B、7
C、-
1
7
D、-7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,0,-1),則下列向量中與
a
所成夾角為120°的是(  )
A、(1,0,1)
B、(1,-1,0)
C、(0,-1,-1)
D、(-1,1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,2,-2),若|
b
|=2|
a
|,且
a
b
,則
b
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案