(14分)設函數(shù)f(x)=ax2+bx+k(k>0)在x=0處取得極值,且曲線y=f(x)在點(1,f(1))處的切線垂直于直線x+2y+1=0.

(1)求a,b的值;

(2)若函數(shù)g(x)=,討論g(x)的單調(diào)性.

 

 

【答案】

解:(1)因f(x)=ax2+bx+k(k>0),故f′(x)=2ax+b,又f(x)在x=0處取得極值,故f′(0)=0,從而b=0.

由曲線y=f(x)在(1,f(1))處的切線與直線x+2y+1=0相互垂直,

可知該切線斜率為2,即f′(1)=2,有2a=2,從而a=1.

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

 (本小題滿分14分)設函數(shù)f (x)滿足f (0) =1,且對任意,都有f (xy+1) = f (x) f (y)-f (y)-x+2.(I)       求f (x) 的解析式;(II)   若數(shù)列{an}滿足:an+1=3f (an)-1(n ?? N*),且a1=1,求數(shù)列{an}的通項公式;

(Ⅲ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)已知函數(shù)f(x)滿足2ax·f(x)=2f(x)-1,f(1)=1,設無窮數(shù)列{an}滿足an+1=f(an).(1)求函數(shù)f(x)的表達式;(2)若a1=3,從第幾項起,數(shù)列{an}中的項滿足anan+1;(3)若a1m為常數(shù)且mN+,m≠1),求最小自然數(shù)N,使得當nN時,總有0<an<1成立。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省山一中高三第二次統(tǒng)測理科數(shù)學 題型:解答題

(本小題滿分14分)

設函數(shù)f(x)=tx2+2t2xt-1(tR,t>0).

(1)求f(x)的最小值s(t);

(2)若s(t)<-2tmt∈(0,2)時恒成立,求實數(shù)m的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江西省高三第三次段考數(shù)學理卷 題型:解答題

(本小題滿分14分)設函數(shù)f(x) = x2 + bln(x+1),

(1)若對定義域的任意x,都有f(x)≥f(1)成立,求實數(shù)b的值;

(2)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實數(shù)b的取值范圍;

(3)若b = -1,,證明對任意的正整數(shù)n,不等式都成立

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)

       設函數(shù)f(x)=(x2 +ax+a)e-x,其中x∈R,a是實常數(shù),e是自然對數(shù)的底數(shù).

(1)確定a的值,使f(x)的極小值為0;

(2)證明:當且僅當a=5時,f(x)的極大值為5;

(3)討論關于x的方程的實數(shù)根的個數(shù).

查看答案和解析>>

同步練習冊答案