設橢圓的焦點在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設分別是橢圓的左、右焦點,為橢圓上的第一象限內的點,直線交軸與點,并且,證明:當變化時,點在某定直線上.
(1);(2)詳見解析.
解析試題分析:(1)由橢圓的焦距為,可得,又由,從而可以建立關于的方程,即可解得,因此橢圓的方程為;(2)根據(jù)題意,可設,條件中關于的約束只有及在橢圓上,因此需從即為出發(fā)點建立,滿足的關系式,由題意可得直線的斜率,直線的斜率,
故直線的方程為,當時,即點的坐標為,
故直線的斜率為,因此,化簡得,又由點在橢圓上,可得,即點在直線上.
試題解析:(1)∵焦距為1,∴,∴,
故橢圓的方程為;
(2)設,其中,由題設知,
則直線的斜率,直線的斜率,
故直線的方程為,當時,即點的坐標為,
∴直線的斜率為,
∵,∴,化簡得
將上式代入橢圓的方程,由于在第一象限,解得,即點在直線上.
考點:1.橢圓的標準方程;2.兩直線的位置關系.
科目:高中數(shù)學 來源: 題型:解答題
設分別是橢圓的左,右焦點.
(1)若是橢圓在第一象限上一點,且,求點坐標;
(2)設過定點的直線與橢圓交于不同兩點,且為銳角(其中為原點),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的兩個焦點分別為,且,點在橢圓上,且的周長為6.
(1)求橢圓的方程;(2)若點的坐標為,不過原點的直線與橢圓相交于不同兩點,設線段的中點為,且三點共線.設點到直線的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的右焦點為,為上頂點,為坐標原點,若△的面積為,且橢圓的離心率為.
(1)求橢圓的方程;
(2)是否存在直線交橢圓于,兩點, 且使點為△的垂心?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
橢圓的對稱中心在坐標原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)是否存在斜率 的直線使直線與橢圓相交于不同的兩點M,N滿足,若存在,求直線l的方程;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設橢圓的焦點在軸上, 分別是橢圓的左、右焦點,點是橢圓在第一象限內的點,直線交軸于點,
(1)當時,
(1)若橢圓的離心率為,求橢圓的方程;
(2)當點P在直線上時,求直線與的夾角;
(2) 當時,若總有,猜想:當變化時,點是否在某定直線上,若是寫出該直線方程(不必求解過程).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設圓C與兩圓(x+)2+y2=4,(x-)2+y2=4中的一個內切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)已知點M(,),F(xiàn)(,0),且P為L上動點,求||MP|-|FP||的最大值及此時點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,設橢圓動直線與橢圓只有一個公共點,且點在第一象限.
(1)已知直線的斜率為,用表示點的坐標;
(2)若過原點的直線與垂直,證明:點到直線的距離的最大值為.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com