如圖,在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)EF分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EFAC,EFACO,沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.

(1)求證:BD⊥平面POA
(2)記三棱錐P­ABD體積為V1,四棱錐P­BDEF體積為V2,且,求此時線段PO的長.
(1)見解析(2)
(1)在菱形ABCD中,∵BDAC,
BDAO.
EFAC,∴POEF,
∵平面PEF⊥平面ABFED,平面PEF∩平面ABFEDEF,且PO?平面PEF.
PO⊥平面ABFED,
BD?平面ABFED,
POBD.
AOPOO,AOPO?平面POA.
BD⊥平面POA.
(2)設(shè)AOBDH
由(1)知,PO⊥平面ABFEDPOCO.
PO是三棱錐P­ABD的高及四棱錐P­BDEF的高
V1SABD·PO,V2S梯形BFED·PO
S梯形BFEDSABDSBCD
SCEFSBCD
BDACEFAC,∴EFBD,∴△CEF∽△CDB

COCHAH×2
∴線段PO的長為.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AA1,BB1為圓柱OO1的母線,BC是底面圓O的直徑,D,E分別是AA1,CB1的中點(diǎn),DE⊥面CBB1.

(1)證明:DE∥面ABC;
(2)求四棱錐C­ABB1A1與圓柱OO1的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐中,,的中點(diǎn),的中點(diǎn),

(1)求證:;
(2)求證:
(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

中,AB=2BF=4,C,E分別是AB,AF的中點(diǎn)(如下左圖).將此三角形沿CE對折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點(diǎn).

(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面ABF;
(3)求三棱錐C-AEF的體積,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在三棱錐中,.

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正方形ABCD的邊長為2,E、F分別為BC、DC的中點(diǎn),沿AE、EF、AF折成一個四面體,使B、C、D三點(diǎn)重合,則這個四面體的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在四棱錐P -ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點(diǎn)O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.

(1)求四棱錐的體積.
(2)若E是PB的中點(diǎn),求異面直線DE與PA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直三棱柱中,,,則該三棱柱的側(cè)面積為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,圖(2)中實(shí)線圍成的部分是長方體(圖(1))的平面展開圖,其中四邊形ABCD是邊長為1的正方形.若向虛線圍成的矩形內(nèi)任意拋擲一質(zhì)點(diǎn).它落在長方體的平面展開圖內(nèi)的概率是,則此長方體的體積是________.

查看答案和解析>>

同步練習(xí)冊答案