【題目】已知函數(shù)(其中為常數(shù)且)
(1)若函數(shù)為減函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍,并說明理由.
【答案】(1);(2).
【解析】
(1)求出函數(shù)為減函數(shù),等價(jià)于,即對恒成立,求出的最小值即可得結(jié)果;(2)設(shè),則原命題等價(jià)于函數(shù)有兩個(gè)不同的零點(diǎn),分類討論的范圍,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,結(jié)合函數(shù)圖象與零點(diǎn)存在定理,可篩選出符合題意的實(shí)數(shù)的取值范圍.
(1)
若函數(shù)為減函數(shù),則,即對恒成立.
設(shè) 在區(qū)間上遞減遞增
即故實(shí)數(shù)的取值范圍是
(2)易知函數(shù)的定義域?yàn)?/span>
設(shè),則原命題等價(jià)于函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍,
當(dāng)時(shí),函數(shù)在區(qū)間上遞減上遞增,若函數(shù)有兩個(gè)不同的零點(diǎn)則必有即此時(shí),在上有
在上,
在區(qū)間上各有一個(gè)零點(diǎn),故合題意;
當(dāng)時(shí),函數(shù)在區(qū)間遞減,函數(shù)至多一個(gè)零點(diǎn),不合題意;
當(dāng)時(shí),函數(shù)在區(qū)間遞減、遞增、遞減,
函數(shù)的極小值為函數(shù)至多一個(gè)零點(diǎn),不合題意;
當(dāng)時(shí),函數(shù)在區(qū)間遞減、遞增、遞減,
函數(shù)的極小值為 ,
函數(shù)至多一個(gè)零點(diǎn),不合題意.
綜上所述,實(shí)數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形中,點(diǎn),,,對角線,交于點(diǎn)P.
(1)求直線的方程;
(2)若點(diǎn)E,F分別在平行四邊形的邊和上運(yùn)動(dòng),且,求的取值范圍;
(3)試寫出三角形區(qū)域(包括邊界)所滿足的線性約束條件,若在該區(qū)域上任取一點(diǎn)M,使,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某年數(shù)學(xué)競賽邀請了一位來自星球的選手參加填空題比賽,共10道題目,這位選手做題有一個(gè)古怪的習(xí)慣:先從最后一題(第10題)開始往前看,凡是遇到會的題目就作答,遇到不會的題目先跳過(允許跳過所有的題目),一直看到第1題,然后從第1題開始往后看,凡是遇到先前未答的題目就隨便寫個(gè)答案,遇到先前已答得題目則跳過(例如,他可以按照9、8、7、4、3、2、1、5、6、10的次序答題),這樣所有題目均有作答,則這位選手可能的答題次序有______種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】受轎車在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時(shí)間有關(guān).某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機(jī)抽取50輛,統(tǒng)計(jì)數(shù)據(jù)如下:
品牌 | 甲 | 乙 | |||
首次出現(xiàn)故 障時(shí)間x(年) | 0<x≤1 | 1<x≤2 | x>2 | 0<x≤2 | x>2 |
轎車數(shù)量(輛) | 2 | 3 | 45 | 5 | 45 |
每輛利潤 (萬元) | 1 | 2 | 3 | 1.8 | 2.9 |
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機(jī)抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.
(3)該廠預(yù)計(jì)今后這兩種品牌轎車銷量相當(dāng),由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)生產(chǎn)哪種品牌的轎車?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,四邊形ABCD是直角梯形,,,,M是棱PC上一點(diǎn),且,平面MBD.
(1)求實(shí)數(shù)λ的值;
(2)若平面平面ABCD,為等邊三角形,且三棱錐P-MBD的體積為2,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓為其左右焦點(diǎn),為其上下頂點(diǎn),四邊形的面積為.點(diǎn)為橢圓上任意一點(diǎn),以為圓心的圓(記為圓)總經(jīng)過坐標(biāo)原點(diǎn).
(1)求橢圓的長軸的最小值,并確定此時(shí)橢圓的方程;
(2)對于(1)中確定的橢圓,若給定圓,則圓和圓的公共弦的長是否為定值?如果是,求的值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知個(gè)正整數(shù),它們的平均數(shù)是,中位數(shù)是,唯一眾數(shù)是,則這個(gè)數(shù)方差的最大值為__________.(精確到小數(shù)點(diǎn)后一位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)數(shù)列的各項(xiàng)是1和2,首項(xiàng)是1,且在第個(gè)1和第個(gè)1之間有個(gè)2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1…,則此數(shù)列的前2017項(xiàng)的和______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班對一次實(shí)驗(yàn)成績進(jìn)行分析,利用隨機(jī)數(shù)表法抽取樣本時(shí),先將50個(gè)同學(xué)按01,02.03,…50進(jìn)行編號,然后從隨機(jī)數(shù)表第9行第11列的數(shù)開始向右讀,則選出的第6個(gè)個(gè)體是( )(注:表為隨機(jī)數(shù)表的第8行和第9行)
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
A.00B.13C.42D.44
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com