【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)a2﹣2ab+5b2=4對a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.
【答案】
(1)解:根據(jù)題意,對x分3種情況討論:
①當(dāng)x<0時,原不等式可化為﹣2x+1<﹣x+1,
解得x>0,又x<0,則x不存在,
此時,不等式的解集為.
②當(dāng)0≤x< 時,原不等式可化為﹣2x+1<x+1,
解得x>0,又0≤x< ,
此時其解集為{x|0<x< }.
③當(dāng)x≥ 時,原不等式可化為2x﹣1<x+1,解得x<2,
又由x≥ ,
此時其解集為{x| ≤x<2},
∪{x|0<x< }∪{x| ≤x<2}={x|0<x<2};
綜上,原不等式的解集為{x|0<x<2}
設(shè)a2﹣2ab+5b2=4對a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.
(2)解:設(shè)a+b=x,則原方程化為8a2-12ax+5x2-4=0,此方程有實根,則△=144x2﹣4×8(5x2﹣4)≥0,解得 ,所以a+b的最大值為2 ,此時a= ,b=
【解析】(1)對x分情況討論,去絕對值;然后分別解之;(2)設(shè)a+b=x,則原方程化為關(guān)于a的一元二次方程的形式,利用判別式法,得到x的范圍.
【考點精析】解答此題的關(guān)鍵在于理解基本不等式在最值問題中的應(yīng)用的相關(guān)知識,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”,以及對絕對值不等式的解法的理解,了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖,則( )
A.函數(shù)f(x)有1個極大值點,1個極小值點
B.函數(shù)f(x)有2個極大值點,2個極小值點
C.函數(shù)f(x)有3個極大值點,1個極小值點
D.函數(shù)f(x)有1個極大值點,3個極小值點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(﹣1,1),且同時滿足下列條件:
①f(x)是奇函數(shù);
②f(x)在定義域上單調(diào)遞減;
③f(1﹣a)+f(1﹣a2)<0.
求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項a1=1,且an+1=2an+1(n∈N*)
(Ⅰ)證明數(shù)列{an+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項和Sn;
(Ⅲ)在條件(Ⅱ)下對任意正整數(shù)n,不等式Sn+ ﹣1>(﹣1)na恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)
(1)若直線x﹣y﹣2=0過拋物線C的焦點,求拋物線C的方程,并求出準(zhǔn)線方程;
(2)設(shè)p=2,A,B是C上異于坐標(biāo)原點O的兩個動點,滿足OA⊥OB,△ABO的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則( )
A.f(x)的一個對稱中心為
B.f(x)的圖象關(guān)于直線 對稱
C.f(x)在 上是增函數(shù)
D.f(x)的周期為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)畫出函數(shù)f(x)在[0,2π]上的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線 ﹣ =1(a>0,b>0)的左、右焦點分別為F1、F2 , 過點F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點,AF2、BF2分別交y軸于P、Q兩點,若△PQF2的周長為12,則ab取得最大值時該雙曲線的離心率為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線 上的點 到焦點 的距離為 .
(1)求 , 的值;
(2)設(shè) , 是拋物線上分別位于 軸兩側(cè)的兩個動點,且 (其中 為坐標(biāo)原點).求證:直線 過定點,并求出該定點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com