下表是某種產(chǎn)品銷售收入與銷售量之間的一組數(shù)據(jù):

銷售量x(噸)
2
3
5
6
銷售收入y(千元)
7
8
9
12
 
(1)畫出散點圖;(2)求出回歸方程;(3)根據(jù)回歸方程估計銷售量為9噸時的銷售收入.
(參考公式:     

(1)見解析;(2); (3) 14.5千元

解析試題分析:(1)略;(2)欲求回歸直線方程,需求得,,進而需得到這四個量,利用公式便可得到;(3)利用(2),代入即可求得.
試題解析:
(1)圖略        4分
(2)解:由題意,
                               8分
于是回歸方程;                                10分
(3)解:由題意,時,

答:根據(jù)回歸方程,銷售量為9噸時,銷售收入約為14.5千元.   12分
考點:數(shù)據(jù)擬合應用(主要考察線性回歸問題處理方法和過程).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

某中學對高二甲、乙兩個同類班級進行加強語文閱讀理解訓練對提高數(shù)學應用題得分率作用的試驗,其中甲班為實驗班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數(shù)學應用題上的得分率基本一致,試驗結(jié)束后,統(tǒng)計幾次數(shù)學應用試題測試的平均成績(均取整數(shù))如表所示:

 
60分以下
61﹣70分
71﹣80分
81﹣90分
91﹣100分
甲班(人數(shù))
3
6
11
18
12
乙班(人數(shù))
3
9
13
15
10
 
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分析估計兩個班級的優(yōu)秀率;
(2)由以上統(tǒng)計列出2×2列聯(lián)表.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了檢驗“喜歡玩手機游戲與認為作業(yè)多”是否有關(guān)系,某班主任對班級的30名學生進行了調(diào)查,得到一個2×2列聯(lián)表:

 
認為作業(yè)多
認為作業(yè)不多
合計
喜歡玩手機游戲
18
2
 
不喜歡玩手機游戲
 
6
 
合計
 
 
30
 
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卡上直接填寫結(jié)果,不需要寫求解過程);
(Ⅱ)能否在犯錯誤的概率不超過0.005的前提下認為“喜歡玩手機游戲”與“認為作業(yè)多”有關(guān)系?
(Ⅲ)若從不喜歡玩手機游戲的人中隨機抽取3人,則至少2人認為作業(yè)不多的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:

日期
12月
1日
12月
2日
12月
3日
12月
4日
12月
5日
溫差x(℃)
10
11
13
12
8
發(fā)芽y(顆)
23
25
30
26
16
 
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,
剩下的2組數(shù)據(jù)用于回歸方程檢驗.
(1)若選取的是12月1日與12月5日的2組數(shù)據(jù),
請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請預測溫差為14℃的發(fā)芽數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

假設關(guān)于某設備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:


2
3
4
5
6

2.2
3.8
5.5
6.5
7.0
 
若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):

由散點圖可知,銷售量與價格之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是;
(1)求的值;
(2)預計在今后的銷售中,銷量與單價仍然服從線性回歸直線方程中的關(guān)系,且該產(chǎn)品的成本是每件4元,為使工廠獲得最大利潤,該產(chǎn)品的單價應定為多少元?(利潤=銷售收入一成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校在高二年級開設了,三個興趣小組,為了對興趣小組活動的開展情況進行調(diào)查,用分層抽樣方法從,三個興趣小組的人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見下表(單位:人)

興趣小組
 
小組人數(shù)
 
抽取人數(shù)
 

 
12
 

 

 
36
 
3
 

 
48
 

 
(1)求的值;
(2)若從兩個興趣小組所抽取的人中選2人作專題發(fā)言,求這2人都來自興趣小組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

電視傳媒為了解某市100萬觀眾對足球節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾每周平均收看足球節(jié)目時間的頻率分布直方圖,將每周平均收看足球節(jié)目時間不低于1.5小時的觀眾稱為“足球迷”,并將其中每周平均收看足球節(jié)目時間不低于2.5小時的觀眾稱為“鐵桿足球迷”.
(1)試估算該市“足球迷”的人數(shù),并指出其中“鐵桿足球迷”約為多少人;
(2)該市要舉辦一場足球比賽,已知該市的足球場可容納10萬名觀眾.根據(jù)調(diào)查,如果票價定為100元/張,則非“足球迷”均不會到現(xiàn)場觀看,而“足球迷”均愿意前往現(xiàn)場觀看.如果票價提高元/張,則“足球迷”中非“鐵桿足球迷”愿意前往觀看的人數(shù)會減少,“鐵桿足球迷”愿意前往觀看的人數(shù)會減少.問票價至少定為多少元/張時,才能使前往現(xiàn)場觀看足球比賽的人數(shù)不超過10萬人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

對某校4000名中學生的體重進行統(tǒng)計,得到頻率分布直方圖如圖所示,為了分析學生的體重與年齡,飲食,運動等方面的關(guān)系,按體重進行分層抽樣方法抽樣,若從體重在75kg以上的學生中抽取了64人,則在全校4000名學生中共抽取的人數(shù)           。

查看答案和解析>>

同步練習冊答案