如圖,,,四點共圓,的延長線交于點,點的延長線上.

(1)若,求的值;
(2)若,求證:線段,成等比數(shù)列.

(1) (2)先證

解析試題分析:(Ⅰ)解:由,四點共圓,得
,∴ ,于是. ①
,,則由,得,即
代入①,得.                           
(Ⅱ)證明:由,得
,∴ .又
,于是,故,,成等比數(shù)列.   
考點:圓內接多邊形的性質與判定;相似三角形的判定;相似三角形的性質.
點評:本題在圓內接四邊形的條件下,一方面證明兩條直線平行,另一方面求線段的比值.著重考查了圓中的比例線段、圓內接四邊形的性質和相似三角形的判定與性質等知識點,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在△ABC中,CD是∠ACB的平分線,△ACD的外接圓交于BC于點E,AB=2AC.

(Ⅰ)求證:BE=2AD;
(Ⅱ)當AC=1,EC=2時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知均在⊙O上,且為⊙O的直徑。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半徑為,交于點,且、
為弧的三等分點,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

中,AB=AC,過點A的直線與其外接圓交于點P,交BC延長線于點D。

(1)求證: ;
(2)若AC=3,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四邊形是圓內接四邊形,延長與的延長線交于點,且, .

(1)求證:
(2)當時,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直線l與⊙O相切于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連結DB,且ADDB

(1)判斷直線DB與⊙O的位置關系,并說明理由;
(2)若PBBO,⊙O的半徑為4cm,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知是圓的直徑,是弦,,垂足為平分。

(1)求證:直線與圓的相切;
(2)求證:。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.

求證:(1);
(2)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)選修4-1幾何證明選講
如圖,在中,,平分于點,點上,
(1)求證:是△的外接圓的切線;
(2)若,求的長.

查看答案和解析>>

同步練習冊答案