【題目】某城市交通部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照,,,,分成5組,制成如圖所示頻率分直方圖.
(1)求圖中的值及這組數(shù)據(jù)的眾數(shù);
(2)已知滿(mǎn)意度評(píng)分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿(mǎn)意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.
【答案】(1),眾數(shù)為75;(2)
【解析】
(1)根據(jù)小矩形面積和為1,求解,根據(jù)最高小矩形的組中值為眾數(shù),求解即可.
(2)先根據(jù)頻率分布直方圖求解在內(nèi)有5人,其中男生3人,女生2人,記為,,,,,古典概型概率公式,求解即可.
(1)由,解得.這組數(shù)據(jù)的眾數(shù)為75.
(2)滿(mǎn)意度評(píng)分值在內(nèi)有人.
其中男生3人,女生2人,記為,,,,.
記滿(mǎn)意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,恰有1名女生為事件.
總基本事件空間為:
則總基本事件個(gè)數(shù)為10個(gè),包含的基本事件個(gè)數(shù)為3個(gè).
根據(jù)古典概型概率公式可知.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,O是正方形的中心,E、F分別為棱AB、的中點(diǎn),則( )
A.直線EF與共面B.
C.平面平面D.OF與所成角為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓:,設(shè)是橢圓上任一點(diǎn),從原點(diǎn)向圓:作兩條切線,分別交橢圓于點(diǎn),.
(1)若直線,互相垂直,且圓心落在第一象限,求圓的圓心坐標(biāo);
(2)若直線,的斜率都存在,并記為,.
①求證:;
②試問(wèn)是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于兩點(diǎn)、,在軸上是否存在點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次體育興趣小組的聚會(huì)中,要安排6人的座位,使他們?cè)谌鐖D所示的6個(gè)椅子中就坐,且相鄰座位(如1與2,2與3)上的人要有共同的體育興趣愛(ài)好.現(xiàn)已知這6人的體育興趣愛(ài)好如下表所示,且小林坐在1號(hào)位置上,則4號(hào)位置上坐的是
小林 | 小方 | 小馬 | 小張 | 小李 | 小周 | |
體育興趣愛(ài)好 | 籃球,網(wǎng)球,羽毛球 | 足球,排球,跆拳道 | 籃球,棒球,乒乓球 | 擊劍,網(wǎng)球,足球 | 棒球,排球,羽毛球 | 跆拳道,擊劍,自行車(chē) |
A.小方B.小張C.小周D.小馬
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】唐三彩是中國(guó)古代陶瓷燒制工藝的珍品,它吸取了中國(guó)國(guó)畫(huà)、雕塑等工藝美術(shù)的特點(diǎn),在中國(guó)文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產(chǎn)至今已有1300多年的歷史,制作工藝十分復(fù)雜,而且優(yōu)質(zhì)品檢驗(yàn)異常嚴(yán)格,檢驗(yàn)方案是:先從燒制的這批唐三彩中任取 3件作檢驗(yàn),這3件唐三彩中優(yōu)質(zhì)品的件數(shù)記為.如果,再?gòu)倪@批唐三彩中任取3件作檢驗(yàn),若都為優(yōu)質(zhì)品,則這批唐三彩通過(guò)檢驗(yàn);如果,再?gòu)倪@批唐三彩中任取1件作檢驗(yàn),若為優(yōu)質(zhì)品,則這批唐三彩通過(guò)檢驗(yàn);其他情況下,這批唐三彩都不能通過(guò)檢驗(yàn).假設(shè)這批唐三彩的優(yōu)質(zhì)品概率為,即取出的每件唐三彩是優(yōu)質(zhì)品的概率都為,且各件唐三彩是否為優(yōu)質(zhì)品相互獨(dú)立.
(1)求這批唐三彩通過(guò)優(yōu)質(zhì)品檢驗(yàn)的概率;
(2)已知每件唐三彩的檢驗(yàn)費(fèi)用為100元,且抽取的每件唐三彩都需要檢驗(yàn),對(duì)這批唐三彩作質(zhì)量檢驗(yàn)所需的總費(fèi)用記為元,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q>0,S2=2a2-2,S3=a4-2,數(shù)列{an}滿(mǎn)足a2=4b1,nbn+1-(n+1)bn=n2+n,(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明數(shù)列{}為等差數(shù)列;
(3)設(shè)數(shù)列{cn}的通項(xiàng)公式為:Cn=,其前n項(xiàng)和為Tn,求T2n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能.近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:
某位同學(xué)分別用兩種模型:①②進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于):
經(jīng)過(guò)計(jì)算得,.
(1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由.
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立y關(guān)于x的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01)
附:歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn),過(guò)點(diǎn)作直線、與圓:和拋物線:都相切.
(1)求拋物線的兩切線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線與拋物線相交于、兩點(diǎn),與拋物線的準(zhǔn)線交于點(diǎn)(其中點(diǎn)靠近點(diǎn)),且,求與的面積之比.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com