已知橢圓的離心率為,長(zhǎng)軸長(zhǎng)為4,M為右頂點(diǎn),過(guò)右焦點(diǎn)F的直線與橢圓交于A、B兩點(diǎn),直線AM、BM與x=4分別交于P、Q兩點(diǎn),(P、Q兩點(diǎn)不重合).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線AB與x軸垂直時(shí),求證:
(3)當(dāng)直線AB的斜率為2時(shí),(2)的結(jié)論是否還成立,若成立,請(qǐng)證明;若不成立,說(shuō)明理由.
【答案】分析:(1)根據(jù)橢圓的基本量,得出a值,再結(jié)合離心率的公式得出c的值,最后得出b2==3,從而得出橢圓的標(biāo)準(zhǔn)方程;
(2)直線AB與x軸垂直,將x=1代入橢圓方程求出交點(diǎn)A、B的坐標(biāo),然后用向量共線的方法分別計(jì)算出P、Q兩點(diǎn)的坐標(biāo),從而得出向量的坐標(biāo),最后用數(shù)量積的坐標(biāo)計(jì)算公式可證出;
(3)設(shè)A(x1,y1),B(x2,y2),P(x3,y3),Q(x4,y4),利用點(diǎn)斜式得出直線AB的方程為y=2(x-1),將其與橢圓方程聯(lián)解消去y得關(guān)于x的方程,然后利用根與系數(shù)的關(guān)系,得出,再利用直線的斜截式方程得,最后利用三點(diǎn)共線得出y3關(guān)于x1,y1的表達(dá)式和y4關(guān)于x2,y2的表達(dá)式,將它們代入到向量的坐標(biāo)表達(dá)式中,化簡(jiǎn)可得:,結(jié)論仍然成立.
解答:解:(1)由題意有2a=4,a=2,,c=1,b2=3
∴橢圓的標(biāo)準(zhǔn)方程為 …(3分)
(2)直線AB與x軸垂直,則直線AB的方程是x=1
則A(1,)B(1,-),M(2,0)
AM、BM與x=1分別交于P、Q兩點(diǎn),A,M,P三點(diǎn)共線,
,共線             …(4分)
可求P(4,-3),∴,
同理:Q(4,3),
命題成立.                     …(5分)
(3)若直線AB的斜率為2,∴直線AB的方程為y=2(x-1),
又設(shè)A(x1,y1),B(x2,y2),P(x3,y3),Q(x4,y4
聯(lián)立消y得 19x2-32x+4=0

…(7分)
又∵A、M、P三點(diǎn)共線,
同理
,

綜上所述:,結(jié)論仍然成立…(10分)
點(diǎn)評(píng):本題以圓錐曲線為載體,考查了直線的方程、直線與橢圓的位置關(guān)系和平面向量的數(shù)量積等知識(shí)點(diǎn),屬于難題.解題時(shí)應(yīng)該注意設(shè)而不求與轉(zhuǎn)化化歸等思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為(  )
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開(kāi)家去工作的時(shí)間在早上7:00-8:00之間,請(qǐng)你求出父親在離開(kāi)家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過(guò)原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊(cè)答案