【題目】正方體ABCD-A1B1C1D1中,EAB中點(diǎn),FCD1中點(diǎn).

(1)求證:EF∥平面ADD1A1

(2)求直線EF和平面CDD1C1所成角的正弦值.

【答案】1見解析;(2

【解析】試題分析:(1)DD1中點(diǎn)M,連接MA,MF,易得AEFM是平行四邊形,有EFAM,從而得證;

(2)因?yàn)?/span>EFAM,AD平面CDD1C1,所以AMD與直線EF和平面CDD1C1所成角相等,在RtAMD中求解即可.

試題解析:

1)證明:取DD1中點(diǎn)M,連接MAMF,有,

所以AEFM是平行四邊形,

所以EFAM,又AM平面ADD1A1,EF平面ADD1A1

所以EF平面ADD1A1,得證.

2)因?yàn)?/span>EFAMAD平面CDD1C1,所以AMD與直線EF和平面CDD1C1所成角相等,

又在RtAMD中,有,所以直線EF和平面CDD1C1所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(萬元)有以下統(tǒng)計(jì)資料:

使用年限x

2

3

4

5

6

維修費(fèi)用y

2

4

5

6

7

若由資料知y對(duì)x呈線性相關(guān)關(guān)系。試求:

(1)求; (2)線性回歸方程

(3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?

附:利用“最小二乘法”計(jì)算a,b的值時(shí),可根據(jù)以下公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)當(dāng)時(shí),方程恰有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(3)將函數(shù)的圖象向右平移個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)中心對(duì)稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法錯(cuò)誤的是

A. 對(duì)分類變量XY,隨機(jī)變量K2的觀測(cè)值k越大,則判斷“XY有關(guān)系的把握程度越小

B. 在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位

C. 兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1

D. 回歸直線過樣本點(diǎn)的中心(,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?

購買意愿強(qiáng)

購買意愿弱

合計(jì)

20~40歲

大于40歲

合計(jì)

(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A是橢圓E: =1的左頂點(diǎn),斜率為k(k>0)的直線交E與A,M兩點(diǎn),點(diǎn)N在E上,MA⊥NA.
(1)當(dāng)|AM|=|AN|時(shí),求△AMN的面積
(2)當(dāng)2|AM|=|AN|時(shí),證明: <k<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明MN∥平面PAB;
(2)求四面體N﹣BCM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的展開式中,前三項(xiàng)系數(shù)的絕對(duì)值依次成等差數(shù)列.

(1)求展開式中的常數(shù)項(xiàng);

(2)求展開式中所有整式項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案