已知等差數(shù)列前三項為a,4,3a,前n項的和為sn,sk=2550.
(1)求a及k的值;
(2)求
1
s1
+
1
s2
+…+
1
sn
(1)設(shè)該等差數(shù)列為{an},則a1=a,a2=4,a3=3a,
由已知有a+3a=2×4,解得a1=a=2,公差d=a2-a1=4-2=2,
將sk=2550代入公式sk=ka1+
k(k-1)
2
•d
,
得,2k+
k(k-1)
2
×2=2550
,解得:k=50,k=-51(舍去),
∴a=2,k=50;
(2)由sn=n•a1+
n(n-1)
2
•d
,得sn=2n+
n(n-1)
2
×2
=n(n+1),
1
sn
=
1
n(n+1)
=
1
n
-
1
n+1
,
1
s1
+
1
s2
+…+
1
sn

=
1
1×2
+
1
2×3
+…+
1
n(n+1)

=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1

=
n
n+1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理科)已知數(shù)列{an}的前n項和Sn滿足Sn=
a
a-1
(an-1)(a為常數(shù)且a≠0,a≠1,n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)記bn=
2Sn
an
+1
,若數(shù)列{bn}為等比數(shù)列,求a的值;
(3)在滿足(2)的條件下,記Cn=
1
1+an
+
1
1-an+1
,設(shè)數(shù)列{Cn}的前n項和為Tn,求證:Tn>2n-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正項等比數(shù)列{an}中,a2=3,則其前3項的和S3的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項和記為Sn,a1=1,an+1=2Sn+1(n≥1).
(Ⅰ)求a2,a3的值;
(Ⅱ)證明數(shù)列{an}是等比數(shù)列,寫出數(shù)列{an}的通項公式;
(Ⅲ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}前三項的和為-3,前三項的積為8.
(1)求等差數(shù)列{an}的通項公式;
(2)若a2,a3,a1成等比數(shù)列,求數(shù)列{|an|}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知Sn數(shù)列{an}的前n項和,且Sn=2an-
1
64

(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=|log2an|,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的首項a1=1,公差d>0.且a2,a5,a14分別是等比數(shù)列{bn}的b1,b2,b3
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{Cn}對任意自然數(shù)n均有
c1
b1
+
c2
b2
+…+
cn
bn
=an+1成立,求c1+c2+…+c2013的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=1,an+1
an
=8

(Ⅰ)求a2,a3;
(Ⅱ)設(shè)bn=log2an,求證:{bn-2}為等比數(shù)列;
(Ⅲ)求{an}的前n項積Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)由下表定義:

),則         

查看答案和解析>>

同步練習(xí)冊答案