(理科做)如圖,點P為橢圓
x2
9
+
y2
5
=1
上的動點,A為橢圓左頂點,F(xiàn)為右焦點.
(1)若∠AFP=60°,求PF所在直線被橢圓所截得的弦長|PQ|;
(2)若點M在線段PF上,且滿足
FM
+
1
2
PM
=
0
,求點M的軌跡方程.
分析:由題意可得,A(-3,0),F(xiàn)(2,0)
(1)由∠AFP=60°可知直線PF的傾斜角為60°或120°即直線PF的斜率,求出直線PF的方程,設P(x1,y1),Q(x2,y2),聯(lián)立直線與橢圓,根據(jù)方程的根與系數(shù)關系可求x1+x2,x1x2,代入公式|PQ|=
(x1-x2)2+(y1-y2)2
=
4(x1-x2)2
=2
(x1+x2)2-4x1x2

(2)設M(x,y),P(m,n),由
FM
+
1
2
PM
=
0
,可得M,N的坐標關系,結合
m2
9
+
n2
5
=1
,可求點M的軌跡方程
解答:解:由題意可得,c2=9-5=4即c=2
∴A(-3,0),F(xiàn)(2,0)
(1)由∠AFP=60°可知直線PF的傾斜角為60°或120°即直線PF的斜率為
3
-
3

以k=
3
為例,則直線PF的方程為y=
3
(x-2)
,設P(x1,y1),Q(x2,y2
聯(lián)立方程
y=
3
(x-2)
x2
9
+
y2
5
=1 
可得32x2+108x+63=0
x1+x2=-
27
8
,x1x2=
63
32

∴|PQ|=
(x1-x2)2+(y1-y2)2
=
4(x1-x2)2
=2
(x1+x2)2-4x1x2

=2
729
64
-4×
63
32
=
15
4

根據(jù)對稱性可知,k=-
3
時|PQ|=
15
4

(2)設M(x,y),P(m,n),則
m2
9
+
n2
5
=1

FM
=(x-2,y),
PM
=(x-m,y-n)

FM
+
1
2
PM
=
0

(x-2,y)+(
x-m
2
,
y-n
2
)=0

3x-4= m
3y= n
代入到方程
m2
9
+
n2
5
=1
,可得
(3x-4)2
9
+
9y2
5
=1

∴點M的軌跡方程
(3x-4)2
9
+
9y2
5
=1
點評:本題主要考查了橢圓的性質的應用,直線與橢圓相交關系的應用,弦長公式的應用及利用相關點法求解點的軌跡方程,屬于綜合性試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:《立體幾何》2010年同步練習B(廣州市)(理科)(解析版) 題型:解答題

(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省淮安市清江中學高二(上)期末數(shù)學試卷(解析版) 題型:解答題

(理科做)如圖所示已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD且PA=1.建立適當?shù)目臻g坐標系,利用空間向量求解下列問題:
(1)求點P、B、D的坐標;
(2)當實數(shù)a在什么范圍內取值時,BC邊上存在點Q,使得PQ⊥QD;
(3)當BC邊上有且僅有一個Q點,使得時PQ⊥QD,求二面角Q-PD-A的余弦值.

查看答案和解析>>

同步練習冊答案