已知數(shù)列是公差不為0的等差數(shù)列,a1=2且a2,a3,a4+1成等比數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

(1);(2)

解析試題分析:(1)數(shù)列的公差為,然后根據(jù)題目列出方程即可求出通項(xiàng)公式;
(2)根據(jù)通項(xiàng)公式的形式,由,利用裂項(xiàng)求和法得即可.
試題解析:(1)設(shè)數(shù)列的公差為,
成等比數(shù)列,得
解得                      2分
當(dāng)時(shí),,這與成等比數(shù)列矛盾舍去
所以                            4分
。即數(shù)列的通項(xiàng)公式為 6分
(2)    7分
                         9分

         12分
考點(diǎn):(1)等差等比數(shù)列的通項(xiàng)公式;(2)數(shù)列求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S7=49,a4和a8的等差中項(xiàng)為2.
(1)求an及Sn;
(2)證明:當(dāng)n≥2時(shí),有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

中這個(gè)數(shù)中取,)個(gè)數(shù)組成遞增等差數(shù)列,所有可能的遞增等差數(shù)列的個(gè)數(shù)記為
(1)當(dāng)時(shí),寫出所有可能的遞增等差數(shù)列及的值;
(2)求;
(3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差不為零,其前n項(xiàng)和為,若=70,且成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)和為,且成等比數(shù)列,當(dāng)時(shí),
(1)求證:當(dāng)時(shí),成等差數(shù)列;
(2)求的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)無(wú)窮數(shù)列{an}滿足:?n∈Ν?,an<an+1,an∈N?.記bn=aan,cn=aan+1(n∈N*).
(1)若bn=3n(n∈N*),求證:a1=2,并求c1的值;
(2)若{cn}是公差為1的等差數(shù)列,問{an}是否為等差數(shù)列,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為數(shù)列的前項(xiàng)和,對(duì)任意的,都有為常數(shù),且.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的公比,數(shù)列滿足,求數(shù)列的通項(xiàng)公式;
(3)在滿足(2)的條件下,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,n∈N*,且滿足a2+a4=14,S7=70.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,則數(shù)列{bn}的最小項(xiàng)是第幾項(xiàng),并求該項(xiàng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

等差數(shù)列{an}的首項(xiàng)為a1,公差d=-1,前n項(xiàng)和為Sn.
(1)若S5=-5,求a1的值.
(2)若Sn≤an對(duì)任意正整數(shù)n均成立,求a1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案