【題目】如圖,AB=BE=BC=2AD=2,且AB⊥BE,∠DAB=60°,AD∥BC,BE⊥AD,
(Ⅰ)求證:面ADE⊥面 BDE;
(Ⅱ)求直線AD與平面DCE所成角的正弦值..

【答案】解:(Ⅰ)∵AB=2AD,∠DAB=60°,∴AD⊥DB,

又BE⊥AD,且BD∩BE=B,

∴AD⊥面BDE,又AD面ADE,∴面ADE⊥面 BDE;

(Ⅱ)∵BE⊥AD,AB⊥BE,∴BE⊥面ABCD,

∴點E到面ABCD的距離就是線段BE的長為2,

設AD與平面DCE所成角為θ,點A到面DCE的距離為d,

由VADCE=VEADC得: ,可解得 ,

而AD=1,則

故直線AD與平面DCE所成角的正弦值為


【解析】(Ⅰ)AB=2AD,∠DAB=60°,可得AD⊥DB,再利用線面面面垂直的判定與性質(zhì)定理即可證明.(Ⅱ)由已知可得BE⊥面ABCD,點E到面ABCD的距離就是線段BE的長為2,設AD與平面DCE所成角為θ,點A到面DCE的距離為d,利用VADCE=VEADC,即可得出.
【考點精析】關于本題考查的平面與平面垂直的判定和空間角的異面直線所成的角,需要了解一個平面過另一個平面的垂線,則這兩個平面垂直;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給出下列兩個命題: 命題p::若在邊長為1的正方形ABCD內(nèi)任取一點M,則|MA|≤1的概率為 .命題q:設 , 是兩個非零向量,則“ =| |”是“ 共線”的充分不必要條件,那么,下列命題中為真命題的是(
A.p∧q
B.¬p
C.p∧(¬q)
D.(¬p)∨(q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣ax,g(x)= +a.
(1)當a=2 時,求F(x)=f(x)﹣g(x)在(0,2]的最大值;
(2)討論函數(shù)F(x)=f(x)﹣g(x) 的單調(diào)性;
(3)若f(x)g(x)≤0 在定義域內(nèi)恒成立,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1(﹣1,0),F(xiàn)2(1,0),曲線C1上任意一點M滿足 ;曲線C2上的點N在y軸的右邊且N到F2的距離與它到y(tǒng)軸的距離的差為1.
(1)求C1 , C2的方程;
(2)過F1的直線l與C1相交于點A,B,直線AF2 , BF2分別與C2相交于點C,D和E,F(xiàn).求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A是雙曲線 =1(a>0,b>0)的左頂點,F(xiàn)1 , F2分別為左、右焦點,P為雙曲線上一點,G是△F1PF2的重心,若 ,| |= ,| |+| |=8,則雙曲線的標準方程為(
A.x2 =1
B. ﹣y2=1
C. =1
D.x2 =1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面是關于公差d>0的等差數(shù)列{an}的四個命題:p1:數(shù)列{an}是遞增數(shù)列;p2:數(shù)列{an}的前n項和Sn是遞增數(shù)列;p3:數(shù)列{ }是遞增數(shù)列;p4:數(shù)列{an+nd}是遞增數(shù)列.其中的真命題為(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】習大大構建的“一帶一路”經(jīng)濟帶的發(fā)展規(guī)劃已經(jīng)得到了越來越多相關國家的重視和參與.某市順潮流、乘東風,聞迅而動,決定利用旅游資源優(yōu)勢,擼起袖子大干一場.為了了解游客的情況,以便制定相應的策略.在某月中隨機抽取甲、乙兩個景點各10天的游客數(shù),畫出莖葉圖如下:
(1)若景點甲中的數(shù)據(jù)的中位數(shù)是125,景點乙中的數(shù)據(jù)的平均數(shù)是124,求x,y的值;
(2)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù).今從這段時期中任取4天,記其中游客數(shù)超過120人的天數(shù)為ξ,求概率P(ξ≤2);
(3)現(xiàn)從上圖的共20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于115且不高于125人的天數(shù)為η,求η的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,三棱柱ABC﹣A1B1C1的底面是邊長為2正三角形,D是A1C1的中點,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求證:A1B∥平面B1DC;
(Ⅱ)求二面角D﹣B1C﹣C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了得到函數(shù)y= sin(2x﹣ )的圖象,只需將函數(shù)y=sinxcosx的圖象(
A.向左平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向右平移 個單位

查看答案和解析>>

同步練習冊答案