【題目】已知四棱錐中,底面是矩形,平面,的中點(diǎn),.

1)求異面直線AECD所成角的大;

2)求二面角EADB大小的余弦值.

【答案】1;(2.

【解析】

1)根據(jù)底面是矩形,平面,以D為原點(diǎn),以DA,DCDP分別為xy,z軸建立空間直角坐標(biāo)系,求得的坐標(biāo),設(shè)異面直線AECD所成角為,代入公式求解.

2)由(1)求得平面EAD的一個法向量,再由平面ADB的一個法向量為:,代入公式求解.

1)因?yàn)榈酌?/span>是矩形,平面

D為原點(diǎn),以DA,DC,DP分別為xy,z軸建立如圖所示空間直角坐標(biāo)系:

,

,

設(shè)異面直線AECD所成角為

,

因?yàn)?/span>,

所以.

2)由(1)知:,

設(shè)平面EAD的一個法向量為

,所以

,得,所以,

又平面ADB的一個法向量為:,

所以,

所以二面角EADB大小的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,分別為線段,上的點(diǎn),且,.

(1)證明:

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系中,點(diǎn),曲線的極坐標(biāo)方程為,點(diǎn)在曲線上運(yùn)動,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)。

(1)求直線的極坐標(biāo)方程與曲線的參數(shù)方程;

(2)求線段的中點(diǎn)到直線的距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著資本市場的強(qiáng)勢進(jìn)入,互聯(lián)網(wǎng)共享單車忽如一夜春風(fēng)來,遍布了各級城市的大街小巷,為了解我市的市民對共享單車的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了50人進(jìn)行分析.若得分低于60分,說明不滿意,若得分不低于60分,說明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1

(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);

(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);

滿意

不滿意

合計

40歲以下

40歲以上

合計

(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再從這7人中隨機(jī)選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.

參考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一盒中裝有9張各寫有一個數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.

(注:若三個數(shù)滿足,則稱為這三個數(shù)的中位數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(fèi)(萬元)的幾組對照數(shù)據(jù):

(年)

2

3

4

5

6

(萬元)

1

2.5

3

4

4.5

參考公式:,.

(1)若知道呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費(fèi)用為9萬元,試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技術(shù)改造后,使用10年的維修費(fèi)用能否比技術(shù)改造前降低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,已知橢圓 C:的離心率為,且過點(diǎn) (),點(diǎn) P 在第四象限, A 為左頂點(diǎn), B 為上頂點(diǎn), PA 交 y 軸于點(diǎn) C,PB 交 x 軸于點(diǎn) D.

(1) 求橢圓 C 的標(biāo)準(zhǔn)方程;

(2) 求 △PCD 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項均為正數(shù)的等比數(shù)列{an}中,,且a4+a5=6a3

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)設(shè)數(shù)列{log2an}的前n項和為Sn,求Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是雙曲線的兩個焦點(diǎn), 在雙曲線上。已知的三邊長成等差數(shù)列,且,則該雙曲線的離心率為

查看答案和解析>>

同步練習(xí)冊答案