橢圓的短軸長為2,長軸是短軸的2倍,則橢圓的中心到其準線的距離是         
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)橢圓的左、右焦點分別為,過的直線 與橢圓交于兩點。
(Ⅰ)若點在圓為橢圓的半焦距)上,且,求橢圓的離心率;
  (Ⅱ)若函數(shù)的圖象,無論為何值時恒過定點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本題滿分14分)
已知橢圓的兩個焦點,且橢圓短軸的兩個端點與構(gòu)成正三角形.
(1)求橢圓的方程;
(2)過點(1,0)且與坐標軸不平行的直線與橢圓交于不同兩點P、Q,若在軸上存在定點E(,0),使恒為定值,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點,設橢圓的右準線軸的交點為,橢圓的上頂點為,直線被以原點為圓心的圓所截得的弦長為

⑴求橢圓的方程及圓的方程;
⑵若是準線上縱坐標為的點,求證:存在一個異于的點,對于圓上任意一點,有為定值;且當在直線上運動時,點在一個定圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)
已知橢圓C的中心在原點,焦點在x軸上,左右焦點分別為F1,F(xiàn)2;且
在橢圓C上.
(1)求橢圓C的方程;
(2)過F1的直線l與橢圓C相交于A、B兩點,且△AF2B的面積為,求以F2為圓
心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程表示焦點在x軸上的橢圓,則滿足的條件是(   )
A.B.C.D.,且

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知的頂點B、C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC 邊上,則的周長是.           
A.             B. 6            C.             D. 12   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓E:與直線相交于A、B兩點,且OA丄OB(O為坐標原點).
(I)求橢圓E與圓的交點坐標:
(II)當時,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

離心率為黃金比的橢圓稱為“優(yōu)美橢圓”.設是優(yōu)美橢圓,、分別是它的左焦點和右頂點,B是它的短軸的一個頂點,則等于__________。

查看答案和解析>>

同步練習冊答案