精英家教網 > 高中數學 > 題目詳情

△ABC的三邊a,b,c滿足等式acosA+bcosB=ccosC,則此三角形必是


  1. A.
    以a為斜邊的直角三角形
  2. B.
    直角三角形
  3. C.
    等邊三角形
  4. D.
    其它三角形
B
分析:先利用正弦定理把題設等式中的邊換成角的正弦,利用和差化積公式和二倍角公式化簡整理求得cos(A-B)=cosC,進而利用三角形內角和求得90°的內角,判斷出三角形為直角三角形.
解答:由正弦定理可知a=2rsinA
b=2rsinB
c=2rsinC
代入acosA+bcosB=ccosC,得sinAcosA+sinBcosB=sinCcosC
sin2A+sin2B=2sinCcosC
即2sin(A+B)cos(A-B)=2sinCcosC
sin(A+B)=sin(180-C)=sinC
∴cos(A-B)=cosC
∴A-B=C或B-A=C
所以A=B+C或B=A+C
∴A=90°或B=90°.
所以是直角三角形故選B.
點評:本題主要考查了正弦定理的運用以及三角形形狀的判斷.解題的關鍵是利用正弦定理把等式的邊轉化成角的問題,利用三角函數的基本關系解決問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

△ABC的三邊a,b,c成等比數列,則角B的范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

銳角△ABC的三邊a,b,c和面積S滿足條件S=
c2-(a-b)24k
,又角C既不是△ABC的最大角也不是△ABC的最小角,則實數k的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量
m
=(sinA,cosA),
n
=(cosB,sinB),
m
n
=sin2C且A、B、C分別為△ABC的三邊a,b,c所對的角.
(1)求角C的大。
(2)若sinA,sinB,sinB成等比數列,且
CA
•(
AB
-
AC
)
=18,求c的值..

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的三邊a,b,c和面積S滿足S=a2-(b-c)2,且b+c=8.
(1)求cosA;
(2)求S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•淄博一模)已知向量
p
m
=(sin(A-B),sin(
π
2
-A)),
p
n
=(1,2sinB),
p
m
p
n
=-sin2C,其中A,B,C分別為△ABC的三邊a,b,c所對的角.
(Ⅰ)求角C的大;
(Ⅱ)若sinA+sinB=2sinC,且S△ABC=
3
,求邊c的長.

查看答案和解析>>

同步練習冊答案