已知奇函數(shù)f(x)滿足f(x+1)=f(x-1),給出以下命題:①函數(shù)f(x)是周期為2的周期函數(shù);②函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱;③函數(shù)f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)對(duì)稱;④若函數(shù)f(x)是(0,1)上的增函數(shù),則f(x)是(3,5)上的增函數(shù),其中正確命題的番號(hào)是( 。
分析:由f(x+2)=f[(x+1)+1]=f[(x+1)-1]=f(x)可得周期為2;由f(1+x)=-f(1-x)可得圖象關(guān)于點(diǎn)(1,0)對(duì)稱,再由奇函數(shù)可得圖象關(guān)于點(diǎn)(k,0)對(duì)稱,故直線x=1不可能是對(duì)稱軸;由周期為2可知,函數(shù)f(x)是(0,1)上的增函數(shù)僅可推得f(x)在(4,5)上為增函數(shù).
解答:解:①因?yàn)槠婧瘮?shù)f(x)滿足f(x+1)=f(x-l),所以f(1+x)=-f(1-x)
所以f(x+2)=f[(x+1)+1]=f[(x+1)-1]=f(x),故周期為2,故①正確;
③由奇函數(shù)f(x)滿足f(x+1)=f(x-l),還可得f(1+x)=-f(1-x),
即函數(shù)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,又奇函數(shù)圖象關(guān)于(0,0)對(duì)稱,再由周期為2,
可得函數(shù)f(x)的圖象關(guān)于點(diǎn)(k,0)(k∈Z)對(duì)稱,故③正確;
②由③可知圖象關(guān)于點(diǎn)(1,0)對(duì)稱,故直線x=1不可能是對(duì)稱軸,故②錯(cuò)誤;
④若函數(shù)f(x)是(0,1)上的增函數(shù),由周期為2可知,
f(x)在(4,5)上為增函數(shù),不能推出在(3,5)上的增函數(shù),故④錯(cuò)誤.
故選A
點(diǎn)評(píng):本題為命題真假的判斷,正確推出函數(shù)的性質(zhì)是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( 。
A、ex-e-x
B、
1
2
(ex+e-x
C、
1
2
(e-x-ex
D、
1
2
(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年遼寧省本溪一中、莊河高中聯(lián)考高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三第二次質(zhì)量檢測(cè)數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( )
A.ex-e-x
B.(ex+e-x
C.(e-x-ex
D.(ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北 題型:單選題

若定義在R上的偶函數(shù)f(x)和奇函數(shù)g(x)滿足f(x)+g(x)=ex,則g(x)=( 。
A.ex-e-xB.
1
2
(ex+e-x
C.
1
2
(e-x-ex
D.
1
2
(ex-e-x

查看答案和解析>>

同步練習(xí)冊(cè)答案