【題目】一個袋中有大小相同,編號分別為1,2,3,4,5的五個球,從中有放回地每次取一個球,共取3次,取得三個球的編號之和不小于13的概率為( )
A.
B.
C.
D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從0,1,2,3,4這五個數(shù)中任選三個不同的數(shù)組成一個三位數(shù),記Y為所組成的三位數(shù)各位數(shù)字之和.
(1)求Y是奇數(shù)的概率;
(2)求Y的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正四面體ABCD中,M是棱AD的中點(diǎn),O是點(diǎn)A在底面BCD內(nèi)的射影,則異面直線BM與AO所成角的余弦值為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中.以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系已知曲線C:pcos2θ=2asinθ(a>0)過點(diǎn)P(﹣4,﹣2)的直線l的參數(shù)方程為 (t為參數(shù))直線l與曲線C分別交于點(diǎn)M,N.
(1)寫出C的直角坐標(biāo)方程和l的普通方程;
(2)若丨PM丨,丨MN丨,丨PN丨成等比數(shù)列,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)F是拋物線τ:x2=2py (p>0)的焦點(diǎn),點(diǎn)A是拋物線上的定點(diǎn),且 =(2,0),點(diǎn)B,C是拋物線上的動點(diǎn),直線AB,AC斜率分別為k1 , k2 .
(I)求拋物線τ的方程;
(Ⅱ)若k1﹣k2=2,點(diǎn)D是點(diǎn)B,C處切線的交點(diǎn),記△BCD的面積為S,證明S為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD為平行四邊形,∠A=60°,線段AB上點(diǎn)F滿足AF=2FB,AB長為12,點(diǎn)E在CD上,EF∥BC,BD⊥AD,BD與EF相交于N.現(xiàn)將四邊形ADEF沿EF折起,使點(diǎn)D在平面BCEF上的射影恰在直線BC上.
(Ⅰ)求證:BD⊥平面BCEF;
(Ⅱ)求折后直線DE與平面BCEF所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點(diǎn).
(1)求證:AB⊥PM;
(2)若N是PB的中點(diǎn),且AN∥平面PCM,求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,右頂點(diǎn)為E,P為直線x= a上的任意一點(diǎn),且( + ) =2.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過F垂直于x軸的直線AB與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),動直線l與橢圓C交于M,N兩點(diǎn),且M,N位于直線AB的兩側(cè),若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}是公差為d(d≠0)的等差數(shù)列,Sn為其前n項(xiàng)和,a1 , a2 , a5成等比數(shù)列.
(Ⅰ)證明S1 , S3 , S9成等比數(shù)列;
(Ⅱ)設(shè)a1=1,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com