【題目】已知直線l的參數(shù)方程為曲線C的參數(shù)方程為.
(1)求曲線C的右頂點到直線l的距離;
(2)若點P的坐標為(1,1),設(shè)直線l與曲線C交于A,B兩點,求|PA||PB|的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱中, , , 為的中點.
(1)證明: 平面;
(2)若,點在平面的射影在上,且側(cè)面的面積為,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓的直徑,點是圓上異于的點,直線平面,分別是的中點.
(1)記平面與平面的交線為,試判斷直線與平面的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線與圓的另一個交點為,且點滿足.記直線與平面所成的角為,異面直線與所成的角為,二面角的大小為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個軸截面.動點M從點B出發(fā)沿著圓柱的側(cè)面到達點D,其距離最短時在側(cè)面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時針旋轉(zhuǎn)θ(0<θ<π)后,邊B1C1與曲線Γ相交于點P.
(1)求曲線Γ長度;
(2)當時,求點C1到平面APB的距離;
(3)是否存在θ,使得二面角D﹣AB﹣P的大小為?若存在,求出線段BP的長度;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
凈利潤占比 | 95.80% | 3.82% | 0.86% |
則下列判斷中不正確的是( )
A.該公司2018年度冰箱類電器銷售虧損
B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供
D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),),曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2)設(shè)曲線與曲線的交點分別為,求的最大值及此時直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:
則下列結(jié)論中正確的是 ( )
A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D. 無法判斷誰生產(chǎn)的產(chǎn)品質(zhì)量好一些
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從六個數(shù)字中任取兩個奇數(shù)和兩個偶數(shù),組成沒有重復(fù)數(shù)字的四位奇數(shù),有__________個這樣的四位奇數(shù)(用數(shù)字填寫答案).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com