已知雙曲線中心在原點(diǎn),焦點(diǎn)在x軸上,實(shí)軸長為2.一條斜率為1的直線經(jīng)過雙曲線的右焦點(diǎn)與雙曲線相交于A、B兩點(diǎn),以AB為直徑的圓與雙曲線的右準(zhǔn)線相交于M、N.
(1)若雙曲線的離心率2,求圓的半徑;
(2)設(shè)AB中點(diǎn)為H,若,求雙曲線方程.
【答案】分析:(1)設(shè)出雙曲線方程,將直線方程代入,求出半徑即可.
(2)設(shè)出雙曲線方程,直線方程代入化簡為一元二次方程,并根據(jù)韋達(dá)定理化簡,最后求出c
解答:解:(1)設(shè)雙曲線方程為
由題知:
∴雙曲線方程為右焦點(diǎn)F(2,0)
故直線l的方程為y=x-2代入中得:2x2+4x-7=0
設(shè)A(x1,y1),B(x2,y2),則

∴半徑r=3

(2)設(shè)雙曲線方程為代入并整理得(c2-2)x2+2cx-2c2+1=0,
由韋達(dá)定理:
設(shè)
設(shè)圓半徑為R且的夾角為θ,



得:c2=3,
∴所求的雙曲線方程為
點(diǎn)評:本題考查圓錐曲線綜合運(yùn)用,以及雙曲線的標(biāo)準(zhǔn)方程,平面向量的數(shù)量級運(yùn)算,通過對多種知識的綜合理解,考查對知識的綜合運(yùn)用能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F(
7
,0),直線y=x-1與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是( 。
A、
x2
3
-
y2
4
=1
B、
x2
4
-
y2
3
=1
C、
x2
5
-
y2
2
=1
D、
x2
2
-
y2
5
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn),焦點(diǎn)在x軸上,實(shí)軸長為2.一條斜率為1的直線經(jīng)過雙曲線的右焦點(diǎn)與雙曲線相交于A、B兩點(diǎn),以AB為直徑的圓與雙曲線的右準(zhǔn)線相交于M、N.
(1)若雙曲線的離心率2,求圓的半徑;
(2)設(shè)AB中點(diǎn)為H,若
HM
HN
=-
16
3
,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F1(-
5
, 0)
,點(diǎn)P位于該雙曲線上,線段PF1的中點(diǎn)坐標(biāo)為(0,2),則雙曲線的方程為( 。
A、
x2
4
-y2=1
B、x2-
y2
4
=1
C、
x2
2
-
y2
3
=1
D、
x2
3
-
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F(
7
,0),直線y=x-1與其相交于M、N兩點(diǎn),MN中點(diǎn)的橫坐標(biāo)為-
2
3
,則此雙曲線的方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn),一個(gè)焦點(diǎn)為F1(-
5
,0)
,點(diǎn)P在雙曲線上,且線段PF1的中點(diǎn)坐標(biāo)為(0,2),則此雙曲線的離心率是
5
5

查看答案和解析>>

同步練習(xí)冊答案