若方程
x2
k-2
+
y2
3-k
=1
表示橢圓,則實數(shù)k的取值范圍是( 。
A.k<2B.k>3
C.2<k<3且k≠
5
2
D.k<2或k>3
∵方程
x2
k-2
+
y2
3-k
=1
表示橢圓,
k-2>0
3-k>0
k-2≠3-k
,
∴2<k<3且k≠
5
2
,
∴實數(shù)k的取值范圍是2<k<3且k≠
5
2

故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)橢圓過點,且著焦點為
(Ⅰ)求橢圓的方程;
(Ⅱ)當過點的動直線與橢圓相交與兩不同點時,在線段上取點,滿足,證明:點總在某定直線上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓經(jīng)過點(0,3),且長軸是短軸的3倍,則橢圓的標準方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知△ABC的兩個頂點B(-3,0),C(3,0)且三邊AC、BC、AB的長成等差數(shù)列,求點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓中心在原點,坐標軸為對稱軸,離心率是
2
2
,過點(4,0),則橢圓的方程是( 。
A.
x2
16
+
y2
8
=1
B.
x2
16
+
y2
8
=1
x2
8
+
y2
16
=1
C.
x2
16
+
y2
32
=1
D.
x2
16
+
y2
8
=1
x2
16
+
y2
32
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

若橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(-3,2)離心率為
3
3
,⊙O的圓心為原點,直徑為橢圓的短軸,⊙M的方程為(x-8)2+(y-6)2=4,過⊙M上任一點P作⊙的切線PA、PB切點為A、B.
(1)求橢圓的方程;
(2)若直線PA與⊙M的另一交點為Q當弦PQ最大時,求直線PA的直線方程;
(3)求
OA
OB
的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程x2+ky2=4表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是( 。
A.(0,1)B.(0,2)C.(1,4)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求適合下列條件的橢圓標準方程:
(1)焦點在y上,且經(jīng)過兩點(0,2)和(1,0);
(2)經(jīng)過點(
6
3
3
)
和點(
2
2
3
,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,P是橢圓
x2
25
+
y2
16
=1(xy≠0)
上的動點,F(xiàn)1、F2是橢圓的焦點,M是∠F1PF2的平分線上一點,且
F2M
MP
=0
.則|OM|的取值范圍______.

查看答案和解析>>

同步練習冊答案