(本題滿分12分)過點作直線與拋物線相交于兩點,圓

(1)若拋物線在點處的切線恰好與圓相切,求直線的方程;
(2)過點分別作圓的切線,試求的取值范圍.
(I). (Ⅱ).

試題分析:(I)設(shè),得過點的切線方程為:
,即  (3分)
由已知:,又,           (5分)
,即點坐標為, (6分)
直線的方程為:.    (7分)
(Ⅱ)由已知,直線的斜率存在,則設(shè)直線的方程為:,(8分)
聯(lián)立,得 
     (9分)
解法二:     (12分)

      (13分)

        (15分)
解法三:

同理,       (13分)

的取值范圍是.     (15分)
點評:容易題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)解法較多,但都涉及到整體代換,簡化證明過程,值得學(xué)習(xí)。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)
已知一條曲線上的點到定點的距離是到定點距離的二倍,求這條曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)點是以為左、右焦點的雙曲線左支上一點,且滿足,則此雙曲線的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓的左焦點作直線交橢圓于、兩點,若存在直線使坐標原點恰好在以為直徑的圓上,則橢圓的離心率取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓中,分別是其左右焦點,若,則該橢圓離心率的取值范圍是 (     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點與雙曲線的左焦點重合,則實數(shù)=    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左、右焦點分別為,離心率, .
(I)求橢圓的標準方程;
(II)過點的直線與該橢圓交于兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線到拋物線的準線距離為d1,到直線的距離為d2,則d1+d2的最小值是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線=1的漸近線與圓(x-3)2+y2=r2(r>0)相切,則r=(   )
A.B.2C.3D.6

查看答案和解析>>

同步練習(xí)冊答案