設(shè)拋物線的焦點(diǎn)為,點(diǎn),線段的中點(diǎn)在拋物線上.設(shè)動(dòng)直線與拋物線相切于點(diǎn),且與拋物線的準(zhǔn)線相交于點(diǎn),以為直徑的圓記為圓.
(1)求的值;
(2)證明:圓與軸必有公共點(diǎn);
(3)在坐標(biāo)平面上是否存在定點(diǎn),使得圓恒過(guò)點(diǎn)?若存在,求出的坐標(biāo);若不存在,說(shuō)明理由.
(1)1 (2)見(jiàn)解析 (3)存在,
解析試題分析:(1)由拋物線方程求出焦點(diǎn)坐標(biāo),再由中點(diǎn)坐標(biāo)公式求得FA的中點(diǎn),由中點(diǎn)在拋物線上求得p的值;
(2)聯(lián)立直線方程和拋物線方程,由直線和拋物線相切求得切點(diǎn)坐標(biāo),進(jìn)一步求得Q的坐標(biāo)(用含k的代數(shù)式表示),求得PQ的中點(diǎn)C的坐標(biāo),求出圓心到x軸的距離,求出,由半徑的平方與圓心到x軸的距離的平方差的符號(hào)判斷圓C與x軸的位置關(guān)系;
(3)法一、假設(shè)平面內(nèi)存在定點(diǎn)M滿足條件,設(shè)出M的坐標(biāo),結(jié)合(2)中求得的P,Q的坐標(biāo),求出向量 的坐標(biāo),由恒成立求解點(diǎn)M的坐標(biāo).
(1)利用拋物線的定義得,故線段的中點(diǎn)的坐標(biāo)為,代入方程得,解得.
(2)由(1)得拋物線的方程為,從而拋物線的準(zhǔn)線方程為
由得方程,
由直線與拋物線相切,得
且,從而,即,
由,解得,
∴的中點(diǎn)的坐標(biāo)為
圓心到軸距離,
∵
所圓與軸總有公共點(diǎn).
(3)假設(shè)平面內(nèi)存在定點(diǎn)滿足條件,由拋物線對(duì)稱性知點(diǎn)在軸上,設(shè)點(diǎn)坐標(biāo)為,
由(2)知,
∴ 。
由得,
所以,即或
所以平面上存在定點(diǎn),使得圓恒過(guò)點(diǎn).
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)M、N為拋物線C:y=x2上的兩個(gè)動(dòng)點(diǎn),過(guò)M、N分別作拋物線C的切線l1、l2,與x軸分別交于A、B兩點(diǎn),且l1與l2相交于點(diǎn)P,若|AB|=1.
(1)求點(diǎn)P的軌跡方程;
(2)求證:△MNP的面積為一個(gè)定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為,,右頂點(diǎn)為A,上頂點(diǎn)為B.已知=.
(1)求橢圓的離心率;
(2)設(shè)P為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段PB為直徑的圓經(jīng)過(guò)點(diǎn),經(jīng)過(guò)點(diǎn)的直線與該圓相切與點(diǎn)M,=.求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為,上頂點(diǎn)為B,拋物線分別以A,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,與相交于直線上一點(diǎn)P.
(1)求橢圓C及拋物線的方程;
(2)若動(dòng)直線與直線OP垂直,且與橢圓C交于不同的兩點(diǎn)M,N,已知點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知兩條拋物線和,過(guò)原點(diǎn)的兩條直線和,與分別交于兩點(diǎn),與分別交于兩點(diǎn).
(1)證明:
(2)過(guò)原點(diǎn)作直線(異于,)與分別交于兩點(diǎn).記與的面積分別為與,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知圓的方程為,定直線的方程為.動(dòng)圓與圓外切,且與直線相切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)直線與軌跡相切于第一象限的點(diǎn), 過(guò)點(diǎn)作直線的垂線恰好經(jīng)過(guò)點(diǎn),并交軌跡于異于點(diǎn)的點(diǎn),求直線的方程及的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的兩焦點(diǎn)分別為,長(zhǎng)軸長(zhǎng)為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過(guò)點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長(zhǎng)度。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
過(guò)拋物線C:上的點(diǎn)M分別向C的準(zhǔn)線和x軸作垂線,兩條垂線及C的準(zhǔn)線和x軸圍成邊長(zhǎng)為4的正方形,點(diǎn)M在第一象限.
(1)求拋物線C的方程及點(diǎn)M的坐標(biāo);
(2)過(guò)點(diǎn)M作傾斜角互補(bǔ)的兩條直線分別與拋物線C交于A,B兩點(diǎn),且直線AB過(guò)點(diǎn)(0,-1),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓過(guò)點(diǎn),且離心率.
(1)求橢圓C的方程;
(2)已知過(guò)點(diǎn)的直線與該橢圓相交于A、B兩點(diǎn),試問(wèn):在直線上是否存在點(diǎn)P,使得是正三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com