如圖,三棱柱中,側(cè)棱平面,為等腰直角三角形,,且分別是的中點.
(1)求證:平面;
(2)求銳二面角的余弦值.
(1)詳見解析,(2)
解析試題分析:(1)要證明平面,需證明及,前面在平面中證明,利用勾股定理,即通過計算設(shè),則.∴,∴.后者通過線面垂直與線線垂直的轉(zhuǎn)化得,即由面面,得面,再得。(2)求二面角的余弦值,可通過作、證、算,本題可過作,則為所求二面角的平面角.也可利用空間向量求,先建系,求出平面及平面的法向量,利用向量數(shù)量積求出兩法向量的夾角,最后根據(jù)二面角與向量夾角關(guān)系得出結(jié)論.
試題解析:(1)連結(jié),∵是等腰直角三角形斜邊的中點,∴.
又三棱柱為直三棱柱,
∴面面,
∴面,. 2分
設(shè),則.
∴,∴. 4分
又,∴ 平面. 6分
(2)以為坐標原點,分別為軸建立直角坐標系如圖,設(shè),
則,
,. 8分
由(1)知,平面,
∴可取平面的法向量.
設(shè)平面的法向量為,
由
∴可取. 10分
設(shè)銳二面角的大小為,
則.
∴所求銳二面角的余弦值為. 12分
考點:線面垂直判定定理,利用空間向量求二面角
科目:高中數(shù)學 來源: 題型:解答題
如圖,邊長為1的正三角形所在平面與直角梯形所在平面垂直,且,,,,、分別是線段、的中點.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面為正方形,側(cè)面底面.為等腰直角三角形,且.,分別為底邊和側(cè)棱的中點.
(1)求證:∥平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,,的中點,,.
(1)設(shè)是的中點,證明:平面;
(2)證明:在內(nèi)存在一點,使平面,并求點到,的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com