拋物線
的焦點到雙曲線
的漸近線的距離為( )
由曲線對稱性,取雙曲線
的一條漸近線
,即
,又拋物線
的焦點為
,所以焦點到雙曲線的漸近線的距離為
.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分18分,第(1)小題4分,第(2)小題6分,第(2)小題8分)
已知雙曲線C:
的一個焦點是
,且
。
(1)求雙曲線C的方程;
(2)設(shè)經(jīng)過焦點
的直線
的一個法向量為
,當直線
與雙曲線C的右支相交于
不同的兩點時,求實數(shù)
的取值范圍;并證明
中點
在曲線
上。
(3)設(shè)(2)中直線
與雙曲線C的右支相交于
兩點,問是否存在實數(shù)
,使得
為銳角?若存在,請求出
的范圍;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.
已知拋物線
(
且
為常數(shù)),
為其焦點.
(1)寫出焦點
的坐標;
(2)過點
的直線與拋物線相交于
兩點,且
,求直線
的斜率;
(3)若線段
是過拋物線焦點
的兩條動弦,且滿足
,如圖所示.求四邊形
面積的最小值
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,設(shè)拋物線
的準線與
軸交于
,焦點為
;以
為焦點,離心率
的橢圓
與拋物線
在
軸上方的交點為
,延長
交拋物線于點
,
是拋物線
上一動點,且
M在
與
之間運動.
(1)當
時,求橢圓
的方程;
(2)當
的邊長恰好是三個連續(xù)的自然數(shù)時,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若橢圓
與雙曲線
均為正數(shù))有共同的焦點
F1,
F2,
P是兩曲線的一個公共點,則
等于 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
過直角坐標平面
中的拋物線
的焦點
作一條傾斜角為
的直線與拋物線相交于A,B兩點。
(1)用
表示A,B之間的距離;
(2)證明:
的大小是與
無關(guān)的定值,并求出這個值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知點
,直線
:
,
為平面上的動點,過點
作直線
的垂線,垂足為
,且
.
(1)求動點
的軌跡
的方程;
(2)已知圓
過定點
,圓心
在軌跡
上運動,且圓
與
軸交于
、
兩點,設(shè)
,
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
A、
B是雙曲線
C的兩個頂點,直線
l與實軸垂直,與雙曲線
C交于
P、
Q兩點,若
,則雙曲線
C的離心率
e=
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知P是雙曲線
上的動點,F(xiàn)
1、F
2分別是其左、右焦點,O為坐標原點,則
的取值范圍是
。
查看答案和解析>>