若等差數(shù)列{an}的首項為a1=(m∈N*),公差是()n展開式中的常數(shù)項,其中n為7777-15除以19的余數(shù),求數(shù)列{an}的通項公式.

思路解析:先由得出關(guān)于m的不等式組,從而求出整數(shù)m的值;求出7777-15除以19的余數(shù),從而得出n的值;利用二項式定理,求出二項展開式中的常數(shù)項,便得到了公差的取值,由以上的求解,便可得出數(shù)列{an}的通項公式.

解:由題意,得.∵m∈N*,∴m=2.

∴a1==120-20=100.

而7777-15=(1+19×4)77-15

=(19×4)+(19×4)2+…+(19×4)77-15

=(19×4)[(19×4)+…+(19×4)76]+1-15

=(19×4)[(19×4)+…+(19×4)76]-19+5

∴7777-15除以19余5,即n=5.

∴Tr+1=.

令5r-15=0,得r=3.

則T4=·(-1)3=-4.所以d=T4=-4.

所以an=a1+(n-1)d=100+(n-1)·(-4)=104-4n.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

6、若等差數(shù)列{an}的前5項和S5=30,且a2=7,則a7=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的公差為d,前n項的和為Sn,則數(shù)列{
Sn
n
}
為等差數(shù)列,公差為
d
2
.類似地,若各項均為正數(shù)的等比數(shù)列{bn}的公比為q,前n項的積為Tn,則數(shù)列{
nTn
}
為等比數(shù)列,公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2x,若等差數(shù)列{an}的第5項的值為f′(
π6
),則a1a2+a2a9+a9a8+a8a1=
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江模擬)若等差數(shù)列{an}的前n項和為Sn(n∈N*),若a2:a3=5:2,則S3:S5=
3:2
3:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}的項數(shù)m為奇數(shù),且a1+a3+a5+…+am=52,a2+a4+…+am-1=39則m=(  )

查看答案和解析>>

同步練習(xí)冊答案