已知f(x)在x0點(diǎn)處連續(xù),則下列結(jié)論正確的是
導(dǎo)數(shù)為零的點(diǎn)一定是極值點(diǎn)
如果在x0附近的左側(cè)(x)>0,右側(cè)(x)<0,那么f(x0)是極大值
如果在x0附近的左側(cè)(x)>0,右側(cè)(x)<0,那么f(x0)是極小值
如果在x0附近的左側(cè)(x)<0,右側(cè)(x)>0,那么f(x0)是極大值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
4x |
3x2+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π |
2 |
3 |
π |
2 |
| ||
2 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)試判斷:數(shù)列{loga(xn-1)+1}是什么數(shù)列;
(2)當(dāng)DnDn+1對一切n∈N*恒成立時(shí),求實(shí)數(shù)a的取值范圍;
(3)記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)a=時(shí),試比較Sn與n+7的大小,并說明你的結(jié)論.
(文)已知f(x)=ax3+bx2+cx+d(a≠0)是定義在R上的函數(shù),其圖象交x軸于A、B、C三點(diǎn).若點(diǎn)B的坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求c的值.
(2)在函數(shù)f(x)的圖象上是否存在一點(diǎn)M(x0,y0),使得f(x)在點(diǎn)M處的切線斜率為3b?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(3)求|AC|的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com