如圖,在平行四邊形中,,,為線段的中線,將△沿直線翻折成△,使平面⊥平面,為線段的中點.
(1)求證:∥平面;
(2)設(shè)為線段的中點,求直線與平面所成角的余弦值.
(1)證明:取A′D的中點G,連結(jié)GF,CE,由條件易知
FG∥CD,F(xiàn)G=CD.
BE∥CD,BE=CD.
所以FG∥BE,FG=BE.
故四邊形BEGF為平行四邊形,
所以BF∥EG
因為平面,BF平面
所以 BF//平面
(2)解:在平行四邊形,ABCD中,設(shè)BC=a
則AB=CD=2a, AD=AE=EB=a,
連CE,因為
在△BCE中,可得CE=a,
在△ADE中,可得DE=a,
在△CDE中,因為CD2=CE2+DE2,所以CE⊥DE,
在正三角形A′DE中,M為DE中點,所以A′M⊥DE.
由平面A′DE⊥平面BCD,
可知A′M⊥平面BCD,A′M⊥CE.
取A′E的中點N,連線NM、NF,
所以NF⊥DE,NF⊥A′M.
因為DE交A′M于M,
所以NF⊥平面A′DE,
則∠FMN為直線FM與平面A′DE新成角.
在Rt△FMN中,NF=a, MN=a, FM=a,
則cos=.
所以直線FM與平面A′DE所成角的余弦值為
【解析】略
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省分校高二12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分10分) 如圖,在平行四邊形中,,將沿折起到的位置,使平面平面.
(1)求二面角E-AB-D的大;
(2)求四面體的表面積和體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一下學(xué)期期中考試數(shù)學(xué)試題(解析版) 題型:選擇題
如圖,在平行四邊形中,設(shè),,為邊的中點,則
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com