精英家教網 > 高中數學 > 題目詳情

已知等差數列{an}中,a5+a9-a7=10,記Sn=a1+a2+…+an,則S13的值為________.

130
分析:利用a5+a9-a7=10求出a7的值,把S13的13項中項數相加為14的項結合在一起,根據等差數列的性質化簡后,將a7的值代入即可求出值.
解答:根據等差數列的性質可知:a5+a9=2a7
因為a5+a9-a7=10,
所以a7=10,
所以S13=a1+a2+…+a13
=(a1+a13)+(a2+a12)+(a3+a11)+(a4+a10)+(a5+a9)+(a6+a8)+a7
=13a7=130.
故答案為:130.
點評:考查學生靈活運用等差數列性質的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知等差數列{an},公差d不為零,a1=1,且a2,a5,a14成等比數列;
(1)求數列{an}的通項公式;
(2)設數列{bn}滿足bn=an3n-1,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知等差數列{an}滿足a2=0,a6+a8=-10
(1)求數列{an}的通項公式;     
(2)求數列{|an|}的前n項和;
(3)求數列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知等差數列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若{an}為遞增數列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案