已知橢圓
x2
5
-
y2
m
=1的離心率e=
10
5
,則m的值為:
-3或-
25
3
-3或-
25
3
分析:分兩種情況加以討論:當(dāng)橢圓的焦點在x軸上時,橢圓離心率為e=
5+m
5
=
10
5
,解之得m=-3;當(dāng)橢圓的焦點在y軸上時,橢圓的離心率為e=
-m-5
-m
=
10
5
,解之得m=-
25
3
.最后綜上所述,得到正確答案.
解答:解:將橢圓
x2
5
-
y2
m
=1化成標(biāo)準(zhǔn)形式為:
x2
5
+
y2
-m
=1

①當(dāng)橢圓的焦點在x軸上時,a2=5,b2=-m
∴橢圓的離心率為e=
5+m
5
=
10
5
,解之得m=-3
②當(dāng)橢圓的焦點在y軸上時,a2=-m,b2=5
∴橢圓的離心率為e=
-m-5
-m
=
10
5
,解之得m=-
25
3

綜上所述,可得m的值為:-3或-
25
3

故答案為:-3或-
25
3
點評:本題給出含有字母參數(shù)的橢圓方程,在已知離心率的情況下求參數(shù)m之值,著重考查了橢圓的基本概念和簡單幾何性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1
x2
5
+
y2
2
=1和圓C:x2+y2=4,且圓C與x軸交于A1,A2兩點.
(1)設(shè)橢圓C1的右焦點為F,點P的圓C上異于A1,A2的動點,過原點O作直線PF的垂線交橢圓的右準(zhǔn)線交于點Q,試判斷直線PQ與圓C的位置關(guān)系,并給出證明;
(2)設(shè)點M(x0,y0)在直線x+y-3=0上,若存在點N∈C,使得∠OMN=60°(O為坐標(biāo)原點),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有相同兩焦點F1、F2的橢圓
x2
5
+y2=1
和雙曲線
x2
3
-y2=1
,P是它們的一個交點,則△F1PF2的形狀是( 。
A、銳角三角形
B、B直角三角形
C、鈍有三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
5
+y2=1
的左右焦點為F1,F(xiàn)2,設(shè)P(x0,y0)為橢圓上一點,當(dāng)∠F1PF2為直角時,點P的橫坐標(biāo)x0=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓:
x2
5
+y2=1
中,F(xiàn)1、F2分科技別為左、右焦點,過F2作橢圓的弦AB.
(1)求證:
1
|F2A|
+
1
|F2B|
為定值;
(2)求△F1AB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知有相同兩焦點F1、F2的橢圓
x2
5
+y2=1和雙曲線
x2
3
-y2=1,P是它們的一個交點,則△F1PF2的面積是( 。

查看答案和解析>>

同步練習(xí)冊答案