(本小題12分)如圖為等腰直角三角形直角邊長(zhǎng)為8,,,沿DE將三角形ADE折起使得點(diǎn)A在平面BCED上的射影是點(diǎn)C, MC=AC.
(Ⅰ)在BD上確定點(diǎn)N的位置,使得;
(Ⅱ)求CN與平面ABD所成角的正弦值.
(本小題12分)(Ⅰ)解析:由已知, 點(diǎn)A在平面BCED上的射影是點(diǎn)C,
則可知,而如圖建立空間直
角坐標(biāo)系,則可知各點(diǎn)的坐標(biāo)為
C(0,0,0),A(0,0,4),B(0,8,0),D(3,5,0),E(3,0,0)----------------------- 2分
由MC=AC,可知點(diǎn)M的坐標(biāo)為(0,0,),設(shè)點(diǎn)N 的坐標(biāo)為(x,y,0)
則可知y=8-x,即點(diǎn)N 的坐標(biāo)為(x,8-x,0)
設(shè)平面ADE的法向量為,
由題意可知,而,
可得,取x=4,則z=3,
可得----------------------------------------------------------4分
要使等價(jià)于即
解之可得,即可知點(diǎn)N的坐標(biāo)為(2,6,0),點(diǎn)N為BD的三等分點(diǎn).------6分
(Ⅱ)由(Ⅰ)可知,設(shè)平面ADB的法向量為,由題意可知
,而,可得,取x=1,則y=1,z=2
可得 ------------------------------------------------10分
設(shè)CN與平面ABD所成角為,=---------------12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省常德市高三質(zhì)量檢測(cè)考試數(shù)學(xué)理卷 題型:解答題
(本小題12分)
如圖3,已知在側(cè)棱垂直于底面
的三棱柱中,AC=BC, AC⊥BC,點(diǎn)D是A1B1中點(diǎn).
(1)求證:平面AC1D⊥平面A1ABB1;
(2)若AC1與平面A1ABB1所成角的正弦值
為,求二面角D- AC1-A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河北省高三高考?jí)狠S模擬考試文數(shù) 題型:解答題
(本小題12分)如圖,四棱錐中,
側(cè)面是邊長(zhǎng)為2的正三角形,且與底面垂直,底面是的菱形,為的中點(diǎn).
(1)求與底面所成角的大小;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆海南省高一上學(xué)期教學(xué)質(zhì)量監(jiān)測(cè)三數(shù)學(xué) 題型:解答題
(本小題12分)如圖,四棱錐中,底面是正方形,, 底面, 分別在上,且
(1)求證:平面∥平面.
(2)求直線與平面面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年海南省高二下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)文卷(一) 題型:解答題
(本小題12分)
如圖:⊙O為△ABC的外接圓,AB=AC,過(guò)點(diǎn)A的直線交⊙O于D,交BC延長(zhǎng)線于F,DE是BD的延長(zhǎng)線,連接CD。
① 求證:∠EDF=∠CDF;
②求證:AB2=AF·AD。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010集寧一中學(xué)高三年級(jí)理科數(shù)學(xué)第一學(xué)期期末考試試題 題型:解答題
(本小題12分)如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),
(I)求證:平面BCD;
(II)求異面直線AB與CD所成角的大;
(III)求點(diǎn)E到平面ACD的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com