【題目】已知集合A={x|x2﹣2x﹣3<0},集合B={x|2x+1>1},則BA=(
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]∪[3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)

【答案】A
【解析】解:A={x|x2﹣2x﹣3<0}={x|﹣1<x<3},

B={x|2x+1>1}={x|x>﹣1},

CBA=[3,+∞).

故選A.

【考點(diǎn)精析】本題主要考查了集合的補(bǔ)集運(yùn)算和指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)的相關(guān)知識點(diǎn),需要掌握對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補(bǔ)集,簡稱為集合A的補(bǔ)集,記作:CUA即:CUA={x|x∈U且x∈A};補(bǔ)集的概念必須要有全集的限制;0<a<1時:在定義域上是單調(diào)減函數(shù);a>1時:在定義域上是單調(diào)增函數(shù)才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={1,2,3,4,5,6,7},A={2,4,5},則UA=(
A.
B.{2,4,6}
C.{1,3,6,7}
D.{1,3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)在R上可導(dǎo),且f(x)=x2+2f′(1)x+3,則(
A.f(0)<f(4)
B.f(0)=f(4)
C.f(0)>f(4)
D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合{1,2,3}={a,b,c},則a+b+c=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足:f(x﹣1)=2x2﹣x,則函數(shù)f(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2+3x,若|x﹣a|≤1,則下列不等式一定成立的是(
A.|f(x)﹣f(a)|≤3|a|+3
B.|f(x)﹣f(a)|≤2|a|+4
C.|f(x)﹣f(a)|≤|a|+5
D.|f(x)﹣f(a)|≤2(|a|+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;。何覜]有偷.根據(jù)以上條件,可以判斷偷珠寶的人是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U={x|y=log2(x﹣1)},集合A={x||x﹣2|<1},則UA=(
A.(3,+∞)
B.[3,+∞)
C.(1,3)
D.(﹣∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x﹣4)=﹣f(x),且在區(qū)間[0,2]上是增函數(shù),則(
A.f(2)<f(5)<f(8)
B.f(5)<f(8)<f(2)
C.f(5)<f(2)<f(8)
D.f(8)<f(2)<f(5)

查看答案和解析>>

同步練習(xí)冊答案