【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.
【答案】(I);(II)最大值為,最小值為.
【解析】
試題分析:(I)由橢圓的標(biāo)準(zhǔn)方程設(shè),得橢圓的參數(shù)方程為,消去參數(shù)即得直線的普通方程為;(II)關(guān)鍵是處理好與角的關(guān)系.過點(diǎn)作與垂直的直線,垂足為,則在中,,故將的最大值與最小值問題轉(zhuǎn)化為橢圓上的點(diǎn),到定直線的最大值與最小值問題處理.
試題解析:(I)曲線C的參數(shù)方程為(為參數(shù)).直線的普通方程為.
(II)曲線C上任意一點(diǎn)到的距離為.則
.其中為銳角,且.
當(dāng)時(shí),取到最大值,最大值為.
當(dāng)時(shí),取到最小值,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所發(fā)現(xiàn),一中作物的年收獲量y(單位:kg)與它”相近“作物的株數(shù)x具有線性相關(guān)關(guān)系(所謂兩株作物”相近“是指它們的直線距離不超過1m),并分別記錄了相近作物的株數(shù)為1,2,3,5,6,7時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如下:
X | 1 | 2 | 3 | 5 | 6 | 7 |
y | 60 | 55 | 53 | 46 | 45 | 41 |
(Ⅰ)求該作物的年收獲量y關(guān)于它”相近“作物的株數(shù)x的線性回歸方程;
(Ⅱ)農(nóng)科所在如圖所示的正方形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,其中每一個(gè)小正方形的面積為1,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收獲量以線性回歸方程計(jì)算所得數(shù)據(jù)為依據(jù))
附:對(duì)于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線y=a+bx的斜率和截距的最小二乘估計(jì)分別為 = = , = ﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“若A則B”為真命題,而“若B則C”的逆否命題為真命題,且“若A則B”是“若C則D”的充分條件,而“若D則E”是“若B則C”的充要條件,則¬B是¬E的____條件;A是E的____條件.(填“充分”“必要”、“充要”或“既不充分也不必要”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直三棱柱ABC﹣A1B1C1的所有棱長都為2,點(diǎn)P,Q分別為棱CC1 , BC的中點(diǎn),則四面體A1﹣B1PQ的體積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),為曲線上的動(dòng)點(diǎn),動(dòng)點(diǎn)滿足(且),點(diǎn)的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)在以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo)為,射線與的異于極點(diǎn)的交點(diǎn)為,已知面積的最大值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一兒童游樂場(chǎng)擬建造一個(gè)“蛋筒”型游樂設(shè)施,其軸截面如圖中實(shí)線所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延長線上,α為銳角).圓E與AD,BC都相切,且其半徑長為100﹣80sinα米.EO是垂直于AB的一個(gè)立柱,則當(dāng)sinα的值設(shè)計(jì)為多少時(shí),立柱EO最矮?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}都是單調(diào)遞增數(shù)列,若將這兩個(gè)數(shù)列的項(xiàng)按由小到大的順序排成一列(相同的項(xiàng)視為一項(xiàng)),則得到一個(gè)新數(shù)列{cn}.
(1)設(shè)數(shù)列{an},{bn}分別為等差、等比數(shù)列,若a1=b1=1,a2=b3 , a6=b5 , 求c20;
(2)設(shè){an}的首項(xiàng)為1,各項(xiàng)為正整數(shù),bn=3n , 若新數(shù)列{cn}是等差數(shù)列,求數(shù)列{cn} 的前n項(xiàng)和Sn;
(3)設(shè)bn=qn﹣1(q是不小于2的正整數(shù)),c1=b1 , 是否存在等差數(shù)列{an},使得對(duì)任意的n∈N* , 在bn與bn+1之間數(shù)列{an}的項(xiàng)數(shù)總是bn?若存在,請(qǐng)給出一個(gè)滿足題意的等差數(shù)列{an};若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測(cè)試,測(cè)試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.
(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)將頻率視為概率.根據(jù)樣本估計(jì)總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測(cè)試,求至少有1人成績是“優(yōu)良”的概率;
(3)從抽取的12人中隨機(jī)選取3人,記ξ表示成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com