【題目】已知王明比較喜愛打籃球,近來,他為了提高自己的投籃水平,制定了一個夏季訓(xùn)練計(jì)劃.班主任為了了解其訓(xùn)練效果,開始訓(xùn)練前,統(tǒng)計(jì)了王明場比賽的得分,計(jì)算出得分?jǐn)?shù)據(jù)的中位數(shù)為分,平均得分為分,得分?jǐn)?shù)據(jù)的方差為,訓(xùn)練結(jié)束后統(tǒng)計(jì)了場比賽得分成績莖葉圖如下圖:

1)求王明訓(xùn)練結(jié)束后統(tǒng)計(jì)的場比賽得分的中位數(shù),平均得分以及方差;

2)若只從訓(xùn)練前后統(tǒng)計(jì)的各場比賽得分?jǐn)?shù)據(jù)分析,訓(xùn)練計(jì)劃對王明投籃水平的提高是否有幫助?

【答案】1)中位數(shù)為分,平均得分為分,方差為;(2)訓(xùn)練計(jì)劃對王明投籃水平的提高有幫助.

【解析】

1)由莖葉圖能計(jì)算該籃球運(yùn)動員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的場比賽得分的中位數(shù)、平均得分與方差;

2)根據(jù)訓(xùn)練前后的平均數(shù)、方差的對比可得出結(jié)論.

1)訓(xùn)練后得分?jǐn)?shù)據(jù)得中位數(shù)為分,平均得分為分,

方差為

2)據(jù)題設(shè)分析知,盡管訓(xùn)練后,中位數(shù)與訓(xùn)練前一樣,但平均得分提高了,訓(xùn)練方差小于訓(xùn)練前方差,這說明訓(xùn)練后得分穩(wěn)定性提高了,這是投籃水平提高的表現(xiàn),故此訓(xùn)練計(jì)劃對王明投籃水平的提高有幫助.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為為橢圓上一動點(diǎn)(異于左右頂點(diǎn)),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點(diǎn)兩點(diǎn),問軸上是否存在點(diǎn),使得是以為直角頂點(diǎn)的等腰直角三角形?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】政府為了對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如圖列聯(lián)表,已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是;

(Ⅰ)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

(Ⅱ)請完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想方法說明有多少的把握認(rèn)為不買房心理預(yù)期與城鄉(xiāng)有關(guān)?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】棉花的纖維長度是棉花質(zhì)量的重要指標(biāo).在一批棉花中抽測了60根棉花的纖維長度(單位:),將樣本數(shù)據(jù)制作成如下的頻率分布直方圖:

下列關(guān)于這批棉花質(zhì)量狀況的分析不正確的是(

A.纖維長度在的棉花的數(shù)量為9

B.從這60根棉花中隨機(jī)選取1根,其纖維長度在的概率為0.335

C.有超過一半的棉花纖維長度能達(dá)到以上

D.這批棉花的纖維長度的中位數(shù)的估計(jì)值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨(dú)立.

1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點(diǎn);

2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機(jī)變量,求每盤游戲出現(xiàn)音樂的概率,及隨機(jī)變量的期望;

3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運(yùn)用概率統(tǒng)計(jì)的相關(guān)知識分析分?jǐn)?shù)減少的原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),給出下列四個命題:

的最小正周期為

的圖象關(guān)于直線對稱

在區(qū)間上單調(diào)遞增

的值域?yàn)?/span>

在區(qū)間上有6個零點(diǎn)

其中所有正確的編號是(

A.②④B.①④⑤C.③④D.②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論的單調(diào)性;

2)若的兩個零點(diǎn),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,短軸長為2,過定點(diǎn)的直線交橢圓于不同的兩點(diǎn)、(點(diǎn)在點(diǎn),之間).

1)求橢圓的方程;

2)若,求實(shí)數(shù)的取值范圍;

3)若射線交橢圓于點(diǎn)為原點(diǎn)),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元2020年春,我國湖北武漢出現(xiàn)了新型冠狀病毒,人感染后會出現(xiàn)發(fā)熱、咳嗽、氣促和呼吸困難等,嚴(yán)重的可導(dǎo)致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進(jìn)行科學(xué)試驗(yàn).為了研究小白鼠連續(xù)接種疫苗后出現(xiàn)癥狀的情況,決定對小白鼠進(jìn)行做接種試驗(yàn).該試驗(yàn)的設(shè)計(jì)為:①對參加試驗(yàn)的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗(yàn)共進(jìn)行3個周期.已知每只小白鼠接種后當(dāng)天出現(xiàn)癥狀的概率均為,假設(shè)每次接種后當(dāng)天是否出現(xiàn)癥狀與上次接種無關(guān).

1)若某只小白鼠出現(xiàn)癥狀即對其終止試驗(yàn),求一只小白鼠至多能參加一個接種周期試驗(yàn)的概率;

2)若某只小白鼠在一個接種周期內(nèi)出現(xiàn)2次或3癥狀,則在這個接種周期結(jié)束后,對其終止試驗(yàn).設(shè)一只小白鼠參加的接種周期為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案