若向量
a
、
b
滿足:|
a
|=1,(
a
+
b
)⊥
a
,(2
a
+
b
)⊥
b
,則|
b
|=( 。
A、2
B、
2
C、1
D、
2
2
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由條件利用兩個(gè)向量垂直的性質(zhì),可得(
a
+
b
)•
a
=0,(2
a
+
b
)•
b
=0,由此求得|
b
|.
解答:解:由題意可得,(
a
+
b
)•
a
=
a
2
+
a
b
=1+
a
b
=0,∴
a
b
=-1;
(2
a
+
b
)•
b
=2
a
b
+
b
2
=-2+
b
2
=0,∴b2=2,
則|
b
|=
2
,
故選:B.
點(diǎn)評(píng):本題主要考查兩個(gè)向量垂直的性質(zhì),兩個(gè)向量垂直,則它們的數(shù)量積等于零,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體的正視圖和側(cè)視圖都是邊長(zhǎng)為1的正方形,則這個(gè)幾何體的俯視圖一定不是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O為△ABC的外接圓,半徑為2,若
AB
+
AC
=2
AO
,且|
OA
|=|
AC
|,則向量
BA
在向量
BC
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2
ex
的圖象大致為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-ax+1在區(qū)間(
1
2
, 3)
上有零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A、(2,+∞)
B、[2,+∞)
C、[2, 
5
2
)
D、[2, 
10
3
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①函數(shù)y=tan|x|不是周期函數(shù);
②函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
③函數(shù)y=|tan(2x+
π
3
)|的周期是
π
2
;
④y=sin(
2
+x)是偶函數(shù)
上述命題正確的個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知斜三棱柱直截面(與側(cè)棱垂直且與側(cè)棱都相交的截面)的周長(zhǎng)為8,棱柱的高為4,側(cè)棱與底面成60°角,則斜三棱柱的側(cè)面積為( 。
A、32
B、16
C、16
3
D、
64
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠BAC=90°,PA⊥平面ABC,AB=AC,D是BC的中點(diǎn),則圖中直角三角形的個(gè)數(shù)是( 。
A、5B、8C、10D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)四棱錐的側(cè)棱長(zhǎng)都相等,底面是正方形,其正(主)視圖如圖所示,該四棱錐表面積和體積分別是( 。
A、4
5
,8
B、4
5
,
8
3
C、4(
5
+1),
8
3
D、8,8

查看答案和解析>>

同步練習(xí)冊(cè)答案