【題目】某校高三數(shù)學(xué)競(jìng)賽初賽考試結(jié)束后,對(duì)考生成績(jī)進(jìn)行統(tǒng)計(jì)(考生成績(jī)均不低于90分,滿分150分),將成績(jī)按如下方式分為六組,第一組.如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(1)請(qǐng)補(bǔ)充完整頻率分布直方圖,并估計(jì)這組數(shù)據(jù)的平均數(shù)M;
(2)現(xiàn)根據(jù)初賽成績(jī)從第四組和第六組中任意選2人,記他們的成績(jī)分別為x,y.若|x﹣y|≥10,則稱此二人為“黃金幫扶組”,試求選出的二人為“黃金幫扶組”的概率P1;
(3)以此樣本的頻率當(dāng)作概率,現(xiàn)隨機(jī)在這組樣本中選出3名學(xué)生,求成績(jī)不低于120分的人數(shù)ξ的分布列及期望.

【答案】
(1)解:頻率分布直方圖見解析,

M=95×0.2+105×0.15+115×0.35+125×0.15+135×0.1+145×0.05=114.5


(2)解:依題意可得:第四組人數(shù)為:

=12,

故P1= =


(3)解:依題意可得:樣本總?cè)藬?shù)為: =80,成績(jī)不低于120分的人數(shù)為:80×(0.05+0.10+0.15)=24,故在樣本中任選1人,其成績(jī)不低于120分的概率= = .由已知ξ的可能取值為0,1,2,3.

ξ~B ,P(ξ=0)= = ,P(ξ=1)= = ,

P(ξ=2)= = ,

P(ξ=3)= = .ξ的分布列如下

ξ

0

1

2

3

P

故Eξ= =


【解析】(1)利用頻率分布直方圖的性質(zhì)即可得出.(2)依題意可得:第四組人數(shù)為: =12,可得P1= .(3)依題意可得:樣本總?cè)藬?shù)為: =80,成績(jī)不低于120分的人數(shù)為:80×(0.05+0.10+0.15)=24,故在樣本中任選1人,其成績(jī)不低于120分的概率= = .由已知ξ的可能取值為0,1,2,3.ξ~B ,即可得出.
【考點(diǎn)精析】通過靈活運(yùn)用頻率分布直方圖,掌握頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.

(1)直接寫出函數(shù)的增區(qū)間(不需要證明);

(2)求出函數(shù),的解析式;

(3)若函數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)y=f″(x)是y=f′(x)的導(dǎo)數(shù).某同學(xué)經(jīng)過探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對(duì)稱中心(x0 , f(x0)),其中x0滿足f″(x0)=0.已知f(x)= x3 x2+3x﹣ ,則f( )+f( )+f( )+…+f( )=(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的不等式xex﹣2ax+a<0的非空解集中無(wú)整數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.[ ,
B.[
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是雙曲線上一點(diǎn), , 分別是雙曲線左、右兩個(gè)焦點(diǎn),若,則等于( )

A. 1 B. 17 C. 1或17 D. 以上答案均不對(duì)

【答案】B

【解析】根據(jù)雙曲線的定義得到 根據(jù)雙曲線的焦半徑的范圍得到 故結(jié)果為17.

故答案為:B。

型】單選題
結(jié)束】
10

【題目】某中學(xué)學(xué)生會(huì)為了調(diào)查愛好游泳運(yùn)動(dòng)與性別是否有關(guān),通過隨機(jī)詢問110名性別不同的高中生是否愛好游泳運(yùn)動(dòng)得到如下的列聯(lián)表:由并參照附表,得到的正確結(jié)論是

A. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好游泳運(yùn)動(dòng)與性別有關(guān)”

B. 在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為“愛好游泳運(yùn)動(dòng)與性別無(wú)關(guān)”

C. 的把握認(rèn)為“愛好游泳運(yùn)動(dòng)與性別有關(guān)”

D. 的把握認(rèn)為“愛好游泳運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)=ln(x+a)﹣x,曲線y=f(x)與x軸相切. (Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)是否存在實(shí)數(shù)m使得 恒成立?若存在,求實(shí)數(shù)m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】最新公布的《道路交通安全法》和《道路交通安全法實(shí)施條例》對(duì)車速、安全車距以及影響駕駛?cè)朔磻?yīng)快慢等因素均有詳細(xì)規(guī)定,這些規(guī)定說(shuō)到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動(dòng)車輛,最后完全停止所行駛的距離,即:剎車距離=反應(yīng)距離+制動(dòng)距離,反應(yīng)距離=反應(yīng)時(shí)間×速率,制動(dòng)距離與速率的平方成正比,某反應(yīng)時(shí)間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為

)試將剎車距離表示為速率的函數(shù).

)若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問該車是否超速?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面 , , 中點(diǎn).

(1)證明:直線平面;

(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案