(本小題滿分12分)
如圖:四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,PA⊥平面ABCD,PA=BC=1,AB=,F是BC的中點.

(Ⅰ)求證:DA⊥平面PAC;
(Ⅱ)點G為線段PD的中點,證明CG∥平面PAF;
(Ⅲ)求三棱錐A—CDG的體積.
(1)證明:由四邊形是平行四邊形,推出
平面推出,從而平面.
(2)證明四邊形為平行四邊形,推出,證得∥平面
(3).

試題分析:(1)證明:四邊形是平行四邊形,
平面,又,,
平面.                      (4分)
(2)的中點為,在平面內(nèi)作,則平行且等于,連接,則四邊形為平行四邊形,         (6分)
,平面,平面,
∥平面。                                  (8分)
(3)設(shè)的中點,連結(jié),則平行且等于
平面,平面,
.                 (12分)
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題計算體積時運用了“等體積法”,簡化了解答過程。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖:正方體中,所成的角為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知,是三個互不重合的平面,是一條直線,下列命題中正確命題是(   )
A.若,,則B.若上有兩個點到的距離相等,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體--,E、F分別是的中點,p是上的動點(包括端點),過E、D、P作正方體的截面,若截面為四邊形,則P的軌跡是
A、線段              B、線段       
C、線段和一點      D、線段和一點C

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知垂直平行四邊形所在平面,若,則平行四邊形一定是(填形狀)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱錐的側(cè)面與底面所成的角的余弦值為,則側(cè)棱與底面所成角的正弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,在棱長為2的正方體ABCD—A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點.那么異面直線OE和FD1所成角的余弦值為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
已知是四邊形所在平面外一點,四邊形的菱形,側(cè)面
為正三角形,且平面平面.
(1)若邊的中點,求證:平面.
(2)求證:.

查看答案和解析>>

同步練習冊答案