【題目】小張經(jīng)營(yíng)某一消費(fèi)品專賣店,已知該消費(fèi)品的進(jìn)價(jià)為每件40元,該店每月銷售量(百件)與銷售單價(jià)x(元/件)之間的關(guān)系用下圖的一折線表示,職工每人每月工資為1000元,該店還應(yīng)交付的其它費(fèi)用為每月10000元.
(1)把y表示為x的函數(shù);
(2)當(dāng)銷售價(jià)為每件50元時(shí),該店正好收支平衡(即利潤(rùn)為零),求該店的職工人數(shù);
(3)若該店只有20名職工,問(wèn)銷售單價(jià)定為多少元時(shí),該專賣店可獲得最大月利潤(rùn)?(注:利潤(rùn)=收入-支出)
【答案】(1)(2)30名員工(3)銷售單價(jià)定為55或70元時(shí),該專賣店月利潤(rùn)最大
【解析】
(1)利用待定系數(shù)法分別求出當(dāng)和時(shí)的解析式,進(jìn)而可得所求結(jié)果;(2)設(shè)該店有職工m名,根據(jù)題意得到關(guān)于m的方程,求解可得所求;(3)由題意得到利潤(rùn)的函數(shù)關(guān)系式,根據(jù)分段函數(shù)最值的求法可得所求.
(1)當(dāng)時(shí),設(shè),
由題意得點(diǎn)在函數(shù)的圖象上,
∴,解得,
∴當(dāng)時(shí),.
同理,當(dāng)時(shí),.
∴所求關(guān)系式為
(2)設(shè)該店有職工m名,
當(dāng)x=50時(shí),該店的總收入為元,
又該店的總支出為1000m+10000元,
依題意得40000=1000m+10000,
解得:m=30.
所以此時(shí)該店有30名員工.
(3)若該店只有20名職工,
則月利潤(rùn)
①當(dāng)時(shí),,
所以x=55時(shí),S取最大值15000元;
②當(dāng)時(shí),,
所以x=70時(shí),S取最大值15000元;
故當(dāng)x=55或x=70時(shí),S取最大值15000元,
即銷售單價(jià)定為55或70元時(shí),該專賣店月利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),.
(1)直接寫出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù),的解析式;
(3)若函數(shù),,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)命題中:
①某地市高三理科學(xué)生有15000名,在一次調(diào)研測(cè)試中,數(shù)學(xué)成績(jī) 服從正態(tài)分布 ,已知 ,若按成績(jī)分層抽樣的方式抽取100份試卷進(jìn)行分析,則應(yīng)從120分以上(包括120分)的試卷中抽取 份;
②已知命題 ,則 : ;
③在 上隨機(jī)取一個(gè)數(shù) ,能使函數(shù) 在 上有零點(diǎn)的概率為 ;
④設(shè) ,則“ ”是“ ”的充要條件.
其中真命題的序號(hào)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,等比數(shù)列的前項(xiàng)和為,且,,.
(1)若,求的通項(xiàng)公式;
(2)若,求.
【答案】(1);(2)21或.
【解析】試題分析:(1)設(shè)等差數(shù)列公差為,等比數(shù)列公比為,由已知條件求出,再寫出通項(xiàng)公式;(2)由,求出的值,再求出的值,求出。
試題解析:設(shè)等差數(shù)列公差為,等比數(shù)列公比為有,即.
(1)∵,結(jié)合得,
∴.
(2)∵,解得或3,
當(dāng)時(shí),,此時(shí);
當(dāng)時(shí),,此時(shí).
【題型】解答題
【結(jié)束】
20
【題目】如圖,已知直線與拋物線相交于兩點(diǎn),且, 交于,且點(diǎn)的坐標(biāo)為.
(1)求的值;
(2)若為拋物線的焦點(diǎn), 為拋物線上任一點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)y=f″(x)是y=f′(x)的導(dǎo)數(shù).某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn),任意一個(gè)三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對(duì)稱中心(x0 , f(x0)),其中x0滿足f″(x0)=0.已知f(x)= x3﹣ x2+3x﹣ ,則f( )+f( )+f( )+…+f( )=( )
A.2013
B.2014
C.2015
D.2016
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知點(diǎn)A的極坐標(biāo)為( , ),直線l的極坐標(biāo)方程為ρcos(θ﹣ )=a,且點(diǎn)A在直線l上,
(1)求a的值及直線l的直角坐標(biāo)方程;
(2)圓C的參數(shù)方程為 (α為參數(shù)),試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】最新公布的《道路交通安全法》和《道路交通安全法實(shí)施條例》對(duì)車速、安全車距以及影響駕駛?cè)朔磻?yīng)快慢等因素均有詳細(xì)規(guī)定,這些規(guī)定說(shuō)到底主要與剎車距離有關(guān),剎車距離是指從駕駛員發(fā)現(xiàn)障礙到制動(dòng)車輛,最后完全停止所行駛的距離,即:剎車距離=反應(yīng)距離+制動(dòng)距離,反應(yīng)距離=反應(yīng)時(shí)間×速率,制動(dòng)距離與速率的平方成正比,某反應(yīng)時(shí)間為的駕駛員以的速率行駛,遇緊急情況,汽車的剎車距離為.
()試將剎車距離表示為速率的函數(shù).
()若該駕駛員駕駛汽車在限速為的公路上行駛,遇緊急情況,汽車的剎車距離為,試問(wèn)該車是否超速?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com