【題目】如圖,O為等腰三角形ABC內(nèi)一點(diǎn),⊙O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高AD交于點(diǎn)G,且與AB,AC分別相切于E,F(xiàn)兩點(diǎn).

(1)證明:EF∥BC;
(2)若AG等于⊙O的半徑,且AE=MN=2 ,求四邊形EBCF的面積.

【答案】
(1)證明:∵△ABC為等腰三角形,AD⊥BC,

∴AD是∠CAB的角平分線,

又∵圓O分別與AB、AC相切于點(diǎn)E、F,

∴AE=AF,∴AD⊥EF,

∴EF∥BC


(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分線,

又∵EF為圓O的弦,∴O在AD上,

連結(jié)OE、OM,則OE⊥AE,

由AG等于圓O的半徑可得AO=2OE,

∴∠OAE=30°,∴△ABC與△AEF都是等邊三角形,

∵AE=2 ,∴AO=4,OE=2,

∵OM=OE=2,DM= MN= ,∴OD=1,

∴AD=5,AB=

∴四邊形EBCF的面積為 × × × =


【解析】(1)通過AD是∠CAB的角平分線及圓O分別與AB、AC相切于點(diǎn)E、F,利用相似的性質(zhì)即得結(jié)論;(2)通過(1)知AD是EF的垂直平分線,連結(jié)OE、OM,則OE⊥AE,利用SABC﹣SAEF計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某奶茶店為了解白天平均氣溫與某種飲料銷量之間的關(guān)系進(jìn)行分析研究,記錄了2月21日至2月25日
的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):

平均氣溫x(℃)

9

11

12

10

8

銷量y(杯)

23

26

30

25

21


(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程 = x+ ;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)平均氣溫約為20℃時(shí)該奶茶店的這種飲料銷量.
(參考: = = ;9×23+11×26+12×30+10×25+8×21=1271,92+112+122+102+82=510)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間上單調(diào)遞減的是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A,B,C所對(duì)的邊分別是a,b,c,且.

(1)證明:;

(2)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】累計(jì)凈化量(CCM)是空氣凈化器質(zhì)量的一個(gè)重要衡量指標(biāo),它是指空氣凈化器從開始使用到凈化效率為時(shí)對(duì)顆粒物的累計(jì)凈化量(單位:克).根據(jù)國(guó)家標(biāo)準(zhǔn),對(duì)空氣凈化器的累計(jì)凈化量(CCM)有如下等級(jí)劃分:

計(jì)凈化量(克)

12以上

等級(jí)

已知某批空氣凈化器共臺(tái),其累計(jì)凈化量都分布在區(qū)間內(nèi),為了解其質(zhì)量,隨機(jī)抽取了臺(tái)凈化器作為樣本進(jìn)行估計(jì),按照,,均勻分組,其中累計(jì)凈化量在的所有數(shù)據(jù)有:,,,,,并繪制了如下頻率分布直方圖

1)求的值及頻率分布直方圖中的值;

2)以樣本估計(jì)總體,試估計(jì)這批空氣凈化器(共2000臺(tái))中等級(jí)為的空氣凈化器有多少臺(tái)?

3)從累計(jì)凈化量在的樣本中隨機(jī)抽取2臺(tái),求恰好有1臺(tái)等級(jí)為的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當(dāng)a=﹣3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求函數(shù)y=( x﹣( x+1,x∈[﹣3,2]的單調(diào)區(qū)間,并求它的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2﹣2ax+3為定義在[﹣2,2]上的函數(shù).
(1)當(dāng)a=1時(shí),求f(x)的最大值與最小值;
(2)若f(x)的最大值為M,最小值為m,函數(shù)g(a)=M﹣m,求g(a)的解析式,并求其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三(1)班在一次單元測(cè)試中,每位同學(xué)的考試分?jǐn)?shù)都在區(qū)間[100,128]內(nèi),將該班所有同學(xué)的考試分?jǐn)?shù)分為七組:[100,104),[104,108),[108,112),[112,116),[116,120),[120,124),[124,128],繪制出頻率分布直方圖如圖所示,已知分?jǐn)?shù)低于112分的有18人,則分?jǐn)?shù)不低于120分的人數(shù)為(

A.10
B.12
C.20
D.40

查看答案和解析>>

同步練習(xí)冊(cè)答案