選做題(選修4—2:坐標(biāo)系與參數(shù)方程)求直線(t為參數(shù))被曲線ρ=cos(θ+)所截的弦長.

解:把化為普通方程為4x+3y-1=0,

把ρ=cos(θ+)化為直角坐標(biāo)系中的方程為x2+y2-x+y=0,

∴圓心到直線的距離為.

∴弦長為2=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)選修4-4:坐標(biāo)系與參數(shù)方程
已知半圓C的參數(shù)方程C:
x=cosθ
y=sinθ
θ為參數(shù)且(0≤θ≤π),P為半圓C上一點,A(1,0)O為坐標(biāo)原點,點M在射線OP上,線段OM與
AP
的長度均為
π
3
.?
(1)求以O(shè)為極點,x軸為正半軸為極軸建立極坐標(biāo)系求點M的極坐標(biāo).
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

24、(選做題)選修4-5:不等式選講
已知|x1-2|<1,|x2-2|<1.
(Ⅰ)求證:|x1-x2|<2;
(Ⅱ)若f(x)=x2-x+1,求證:|x1-x2|≤|f(x1)-f(x2)|≤5|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)選修4-2:矩陣與變換

已知,,求二階方陣,使

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(選修4—2:矩陣與變換)已知矩陣M有特征值λ1=4及對應(yīng)的一個特征向量e1=,并有特征值λ2=-1及對應(yīng)的一個特征向量e2=.

(1)求矩陣M;

(2)求M2 008e2.

查看答案和解析>>

同步練習(xí)冊答案