已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),準(zhǔn)線的方程為,點(diǎn)在準(zhǔn)線上,縱坐標(biāo)為,點(diǎn)軸上,縱坐標(biāo)為
(1)求拋物線的方程;
(2)求證:直線恒與一個(gè)圓心在軸上的定圓相切,并求出圓的方程.
(1);(2)
(1)根據(jù)準(zhǔn)線方程與標(biāo)準(zhǔn)方程的對(duì)應(yīng)關(guān)系直接可求出拋物線方程.
(2) 由題意可知,,所以直線
即:.下面證明的關(guān)鍵是先設(shè)圓心在軸上,且與直線相切的圓的方程為,則圓心到直線的距離為
即:,所以:對(duì)于任意恒成立即可.
(1)設(shè)拋物線的方程為
因?yàn)闇?zhǔn)線的方程式,所以,因此拋物線的方程為--------5分
(2)由題意可知,,所以直線
即:------------------------7分
設(shè)圓心在軸上,且與直線相切的圓的方程為
則圓心到直線的距離為
即:--------------------9分
所以:對(duì)于任意恒成立.
即:
解得: 因此直線恒與一個(gè)圓心在軸上的定圓相切,圓的方程為.    -----------------------------12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.直線被圓所截得的弦長(zhǎng)為(  ) 
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若點(diǎn)N(a,b)滿足方程關(guān)系式a2+b2-4a-14b+45=0,則的最大值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

選修4­4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,點(diǎn)O(0,0), B
(1)求以為直徑的圓的直角坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為,判斷直線與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題10分)圓內(nèi)一點(diǎn),過點(diǎn)的直線的傾斜角為,直線交圓于兩點(diǎn).
⑴當(dāng)時(shí),求弦的長(zhǎng);
⑵當(dāng)弦被點(diǎn)平分時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)已知圓G:x2+y2—2x—,經(jīng)過橢圓(a>b>0)的右焦點(diǎn)F及上頂點(diǎn)B,過橢圓外一點(diǎn)M(m,0)(m>0)的傾斜角為的直線l交橢圓于C、D兩點(diǎn).

(Ⅰ)求橢圓方程
(Ⅱ)當(dāng)右焦點(diǎn)在以線段CD為直徑的圓E的內(nèi)部,求實(shí)數(shù)m的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線和圓,設(shè)A是直線上動(dòng)點(diǎn),直線AC交圓于點(diǎn)B,若在圓C上存在點(diǎn)M,使,則點(diǎn)A的橫坐標(biāo)的取值范圍為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)已知直線,一個(gè)圓的圓心軸正半軸上,且該圓與直線軸均相切.
(1)求該圓的方程;
(2)直線與圓交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)p(x,y)在直線x+2y=3上移動(dòng),當(dāng)2x+4y取得最小值時(shí),過點(diǎn)p(x,y)引圓的切線,則此切線長(zhǎng)為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案