設(shè)兩個(gè)向量
a
=(λ+2,λ2-cos2α)和
b
=(m,
m
2
+sinα),其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是(  )
A.[-6,8]B.[4,8]C.[-6,1]D.(4,8]
a
=(λ+2,λ2-cos2α)
,
b
=(m,
m
2
+sinα)
,
a
=2
b
,
可得
λ+2=2m
λ2-cos2α=m+2sinα
,
設(shè)
λ
m
=k
代入方程組可得
km+2=2m
k2m2-cos2α=m+2sinα
,
消去m化簡得(
2k
2-k
)2-cos2α=
2
2-k
+2sinα
,
再化簡得(2+
4
k-2
)2-cos2α+
2
k-2
-2sinα=0
,
再令
1
k-2
=t
代入上式得
(sinα-1)2+(16t2+18t+2)=0可得-(16t2+18t+2)∈[0,4],
即-4≤16t2+18t+2≤0,
解此不等式得:t∈[-1,-
1
8
]
,
因而-1≤
1
k-2
≤-
1
8
,解得-6≤k≤1.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量
a
=(λ+2,λ2-cos2α)
b
=(m,
m
2
+sinα)
,其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是( 。
A、[-6,1]
B、[4,8]
C、(-∞,1]
D、[-1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量
a
=(λ,λ-2cosα)和
b
=(m,
m
2
+sinα),其中λ、m、α為實(shí)數(shù).
a
=2
b
,則m的取值范圍是
[-2
2
,2
2
]
[-2
2
,2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•成都模擬)設(shè)兩個(gè)向量
a
=(λ+2,λ2-cox2α)和
b
=(m,
m
2
+sinα),其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是
[-6,1]
[-6,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量
a
=(λ+2,λ2-cos2α)和
b
=(m,
m
2
+sinα),其中λ,m,α為實(shí)數(shù).若
a
=2
b
,則
λ
m
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)兩個(gè)向量a,其中λ,m,α為實(shí)數(shù).若a=2b,則的取值范圍是___________.

查看答案和解析>>

同步練習(xí)冊(cè)答案