把函數(shù)f(x)=sin2x-2sinxcosx+3cos2x(x∈R)的圖象按向量數(shù)學(xué)公式平移,所得函數(shù)y=g(x)的圖象關(guān)于直線數(shù)學(xué)公式對(duì)稱.
(1)設(shè)有不等的實(shí)數(shù)x1、x2∈(0,π),且f(x1)=f(x2)=1,求x1+x2的值;
(2)求m的最小值;
(3)當(dāng)m取最小值時(shí),求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

解:(1)f(x)=cos2x-sin2x+2,∴,∵f(x1)=f(x2)=1,
,,故 x= 過(guò)函數(shù)圖象的最低點(diǎn),

(2)移后的表達(dá)式用(x,y)表示,則 ,∴
由于 關(guān)于 對(duì)稱,∴
,k∈Z,∴mmin= 解得k=4.
(3),由 2kπ-≤2x-≤2kπ+,k∈z,解得
kπ-≤x≤kπ+,故函數(shù)的減區(qū)間為 ,k∈Z.
分析:(1),由f(x1)=f(x2)=1得到,
故 x= 過(guò)函數(shù)圖象的最低點(diǎn),可得
(2)移后的表達(dá)式用(x,y)表示,則 ,由于 關(guān)于 對(duì)稱,可得 ,mmin=
(3),由 2kπ-≤2x-≤2kπ+,k∈z,求出函數(shù)y=g(x)的單調(diào)遞增區(qū)間.
點(diǎn)評(píng):本題考查余弦函數(shù)的單調(diào)性、對(duì)稱性,y=Asin(ωx+∅)的圖象的變換,求出g(x)的解析式,是解題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)f(x)=sin2x-2sinxcosx+3cos2x(x∈R)的圖象按向量
a
=(m,0)(m>0)
平移,所得函數(shù)y=g(x)的圖象關(guān)于直線x=
17
8
π
對(duì)稱.
(1)設(shè)有不等的實(shí)數(shù)x1、x2∈(0,π),且f(x1)=f(x2)=1,求x1+x2的值;
(2)求m的最小值;
(3)當(dāng)m取最小值時(shí),求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)f(x)=sin2x+2,按向量
a
平移后得到的函數(shù)解析式為y=sin(2x+
3
)
,則
a
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

把函數(shù)f(x)=sin2x+2,按向量數(shù)學(xué)公式平移后得到的函數(shù)解析式為數(shù)學(xué)公式,則數(shù)學(xué)公式=


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年重慶一中高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

把函數(shù)f(x)=sin2x+2,按向量平移后得到的函數(shù)解析式為,則=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

把函數(shù)f(x)=sin2x-2sinxcosx+3cos2x(x∈R)的圖象按向量
a
=(m,0)(m>0)
平移,所得函數(shù)y=g(x)的圖象關(guān)于直線x=
17
8
π
對(duì)稱.
(1)設(shè)有不等的實(shí)數(shù)x1、x2∈(0,π),且f(x1)=f(x2)=1,求x1+x2的值;
(2)求m的最小值;
(3)當(dāng)m取最小值時(shí),求函數(shù)y=g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案