若a,b∈R+,且a+b=4,則log2a+log2b的最大值是(  )
分析:利用基本不等式的性質(zhì)即可得出.
解答:解:∵a,b∈R+,且a+b=4,
∴l(xiāng)og2a+log2b=log2(ab)≤log2(
a+b
2
)2
=log2(
4
2
)2
=2,當(dāng)且僅當(dāng)a=b=2時(shí)取等號(hào).
故選C.
點(diǎn)評(píng):熟練掌握基本不等式的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b∈R+,且a+b=2,則
1
a
+
1
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+x3,x∈R.
(1)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(2)若a,b∈R,且a+b>0,試比較f(a)+f(b)與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于使-x2+2x≤M成立的所有常數(shù)M中,我們把M的最小值l做-x2+2x的上確界,若a,b∈R,且a+b=1,則-
1
2a
-
2
b
的上確界為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a,b∈R+,且a≠b,M=
a
b
+
b
a
,N=
a
+
b
,則M與N的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案